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I. INTRODUCTION

1.1 Motivation and Discussion of Problem

Reliability and availability have become two of the prime
considerations in the design of control systems for a diverse group of
applications that includes flight control systems for both aircraft and
spacecraft. Considerable effort is now being devoted to the design of
highly reliable control system components and to the design of fault-
tolerant processors for online control computations. Deapite the success of
some of these efforts, the extremely high reliability goals that are
becoming commonplace in the Air Force and elsewhere can often be met only by
designing control systems with built-in component redundancy. The
combination of a redundant system architecture and a redundancy management
(RM) algorithm constitutes a fault-tolerant system design.

Predicting the performance of these designs is an important and
difficult problem. The performance is judged by such quantities as the
reliability, the availability, or some other probabilistic quantity such as
average measurement accuracy or average regulation error. Calculating these
quantities is an important problem because they represent the criteria by
which various fault-tolerant system designs are judged. Such calculations
are difficult because fault-tolerant systems are subject to random events,
such as failures and RM decisions, that change the nature of operation of
the system and therefore affect the values of the performance quantities.

Several papers and theses have introduced the concept of modelling the
random behavior of a fault-tolerant system by generalized finite-state
Markov models [1-6]. The states in these models characterize the status of
the system in terms of the number of components that are operating, the

number of these that are failed, and the status of the RM decisions. The
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transition behavior among these states must then be derived from the
probabilistic behavior of component failures and of the RM decisions

(including errors such as false alarms and missed alarms)f Once this

characterization is complete, the resulting Markov model (or, more
generally, semi-Markov model) can bg used to derive the statistics of any
relevant quantity that is dependent upon the status of the system. Among
these are the reliability and avallability of the system, but the statistics
of other quantities such as the time to firat passage of a particular system
status or a performance measure dependent on the system state history can
also be calculated.

Despite their obvious utility for fault-tolerant system performance
analysis, these models suffer from one serious drawback that has
considerably limited their use. That drawback is that they tend to be
computationally intractable even for relatively simple fault-tolerant system
architectures. This intractability is the result of a number of factors:

1. The number of states can be large, particularly for complex systems
comprising many components. Essentially, there are as many states in
the model as there are distinct combinations of failed and unfailed
components and RM decision statuses for which the system remains
operative. Even the exploitation of symmetry and similar component
behavior to reduce the model order can still leave a very large number
of states in the final model.

2. The transient behavior, not the steady state behavior, is of primary
interest. Because the components are subject to failure, the steady
state for nearly all fault-tolerant systems is complete failure. Even

when recovery of components is possible, the steady state may not

become established until more time has elapsed than the useful lifetime




of the system (see comment i below)f In either case, the transient
behavior becomes the behavior of interest and steady state analysis
techniques do not apply. This is particularly unfortunate when the
model is semi-Markov in nature because the transient analysis of such
processes requires the evaluation of convolution quantities (integrals
or sums, respectively, for continuous or discrete time models) that
require massive amounts of computer memory and computation time.

3. The time horizons of interest are often very long in absolute terms,
though they still remain short relative to the time required for the
process to reach the steady state. Typically, a fault-tolerant system
will be used for operating intervals that are a significant fraction of
the expected lifetime of its most failure-prone components. This
fraction seldom approaches unity because the redundancy level of these
components required to satisfy any reasonable specification on the
system reliability would drive the price of the system high enough to
justify the use of fewer, more reliable (and therefore more expensive)
components, On the other hand, extremely short operating times would
yield a probability of failure for any component that is so low that
the extra investment in fault-tolerance would not be justified by the
small increase in reliability. 1In light of 2 above then, the transient
behavior of a Markovian process must be examined over time horizons on
the order of the mean time to failure of the most failure-prone
component. Given the current emphasis on the manufacture of highly
reliable components, these time horizons can be extremely long.

4, A time scale separation tends to exist between the component failure
process and the RM decision process. _Failures tend to occur only

rarely and therefore tend to have large time durations between them.
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Rﬁ decisions, however, must occur quickly following a failure and tend
to occur very rapidly relative to failure events. This means that the
Markovian model of the behavior of the system status exhibits "fast"
modes and "slow" modes. This time scale separation provides the
motivation for the behavioral decomposition methods that are currently
being investigated by us and by other researchers in the field.

The goal of this research project is to develop a method that generates
approximate solutions to the generalized Markov process models that
characterize fault-tolerant system behavior without the use of excessive
computer memory or computation time. The behavioral decomposition alluded
to in Comment 4 above provides the basis for the approach. However, the
nature of fault-tolerant system models is such that extensions to existing
theory are necessary in order to exploit the decomposition approach. These
extensions and the numerical verification of their validity are the primary

results obtained from the work reported here.

1.2 Previous and Related Work

A number of researchers have addressed various aspects of the problem
of approximating the behavior of finite state Markov processes with weak
interactions between groups of states. The most recent work to appear on
this subject is that of Coderch [1]. This paper is derived from [2], which
contains an extensive description of previous work in the area. Much of the
work preceding [1] applied only to limited classes of finite state Markov
processes and, in particular, were not applicable to semi-Markov processes
or to processes with purely transient states. In [1], a method is described

by which continuous time, finite state, weakly coupled Markov processes

without transient states can be decomposed into transition operators that




are valid for increasingly longer time scales. The result is a sequence of
operators that describe the transition behavior of the process at each time
scale such that the multiple time scale solution for the process behavior
converges to the actual process behavior asymptotically as the small
parameter representing the weak interactions converges to zero.
Unfortunately, the method does not apply to semi-~Markov processes and it has
not been e;tended to apply to discrete time processes. Furthermore, the
method requires the solution of very complex linear algebra problems, such
as the description of nullspaces of operators, in the generation of the
operators that are valid at each time scale.

Currently, an effort is underway to extend the results of [1] to finite
state Markov processes evolving in both discrete and continuous time that
include special types of transient states (called "nonsplitting transient
states" in [4]). Some preliminary results of this effort are described in
{3]. Further results are expected soon [4]. It should be noted that the
results in [3] and [4], like those in the previously cited references,
currently are applicable only to Markov processes., It is expected that [4]
will include some results on semi-Markov processes, but the limitations of
these results remain to be seen.

It should also be noted that the methods of (3] and [4], like those in
[1,2], generate a description of the behavior of the process in sequentially
longer time scales. It is frequently the case in fault-tolerant system
analysis that the behavior of interest occurs only in the first time scale.
This observation, combined with the difficulty that the methods of [3] and
(4] have in dealing with transient states and the current lack of results
for semi-Markov processes, suggests that an alternative method for dealing

with these processes is of interest.
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Much of the work reported here is an extension of the work reported by
Korolyuk, et. al. [5,6]. These results apply to finite state semi-Markov
processes with weak interactions, where the continuous time case is treated
in [5) and the discrete time case in [6]). The interactions between the
states is weak in the sense that the transition behavior depends upon a
saall parameter € such that when ¢ is zero the process decomposes into
noninteracting classes of states. The form of the transition behavior
assumed by [5,6] is that the transition probabilities within a class include
terms that are independent of ¢ while the interclass transition
probabilities are all at least first order in €. Also, it is assumed that
the holding time densities associated with all transitions become compressed
near the origin as ¢ becomes small. Finally, it {3 assumed that the

decomposed classes that result from setting €=0 are all ergodic. When all

of these conditions are satisfied, it is shown in [5,6] that the behavior of
the original process over time horizons on the order of t/e¢ can be
approximated by a reduced order Markov process representing the interclass
behavior in this time scale expanded by the stationary distribution of
probability within a class that results from the ergodicity of each class
when € is zero. The parameters of the reduced order Markov process are
expressed in terms of the transition probabilities of the original process
and the mean holding times associated with the holding time distributions.
The results in [5,6] are very powerful for approximating the behavior
of semi-Markov processes that satisfy all of the conditions in the first
order time scale. Unfortunately, most models of fault-tolerant system

behavior do not satisfy these conditions. This observation provides the

motivation for much of the work to be reported here.




In particular, fault=~tolerant system models tend to have two

characteristics that violate the conditions imposed on the process by [5,6].
One is that the holding time densities do not compress as the small
parameter representing the weak interclass interactions is made amaller.

The reason for this is that the holding time densities for fault-tolerant
system models are determined by the probability mass functions of the time
needed for various sequential fault diagnosis tests to reach decisions. The
behavior of the fault diagnosis tests typically occurs in the "fast" time
scale, but it is not altered by changes in the failure rate of the
components, which i{s usually the source of the small interaction parameters
in these models. This situation is illustrated clearly by the model derived
in Chapter 3 of [7], which is the 9-state model referred to in [8]. None of
the holding time densities for this model display the explicit dependence on
the scaled time t/e¢ that [5,6] assume (see Appendix C of [7]).

The other manner in which fault-tolerant system models often violate
the conditions assumed in [5,6] is with respect to the ergodicity of the
classes when e€=0. Many fault-tolerant systems include RM logic that shuts
off a component permanently once it has been diagnosed as failed. If this
diagnosis is the result of a false alarm, the corresponding system status
state involves no failures and hence tends to be in the same class upon
decomposition of the model as other no-failure states such as the state
where no failures and no RM decisions have yet taken place. But the false
alarm state in this case is a trapping state for this class when the failure
probability (and hence ¢) 13 set to zero. Therefore, this class is
nonergodic. This tends to be true of many of the classes of states

associated with models of fault-tolerant system behavior when irreversible

RM logic is used by the system.




The work that was reported in [8] last year discussed some of the
alternatives that were being investigated for circumventing the problems
associated with applying the results of [5,6] to fault tolerant system
models. In [8], it was noted that the ergodicity of the classes is actually
a stronger condition than what is sufficient for the proofs presented in
{5,6] to hold. 1In particular, it is sufficient that the inverse operator

=1

{1 - Pk +«+ v ] exist where Pk and n, are operators that are associated with

K k

the kt

R class defined in [(8,p. T]. This observation leads to the
interesting but not very useful conclusion that the results of [5,6] can be
extended to models for which the weaker condition is satisfied by each
class.

It was also reported in [8] that work had begun on circumventing the
problem that the holding time densities for fault tolerant system models are
not dependent on the small parameter representing the weak interactions.

The approach described in [8] was to introduce a second small parameter that
represented time scaling into the model. The holding time densities then
took the appropria*e form for application of the results of [5,6] provided
the time scaling parameter was proportional to the original small
interaction parameter. It was speculated that the time-scaled results would
exhibit the asymptotic convergence to the correct behavior implied by the

results of (5,6]. Work had just begun on investigating this speculative

hypothesis for continuous time models.

1.3 Research Goals for the Year

The goals for the year of effort reported here were as follows:
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1. Continue the extension of the results of [5,6] to models evolving in
continuous time where the holding time densities do not depend directly
upon the small interaction parameter € but rather on a small time
scaling parameter related to €.

2. Conduct further investigations on nonergodic models by examining a
number of continuous time examples. Attempt to identify a theoretical
result regarding such models.

3. Develop results similar to [5,6] as extended by the two previous goals
for discrete time semi-Markov models of fault tolerant systems.

4. Develop a means for generating the exact solution to models of simple
fault~-tolerant systems for the purpose of comparison with the results
generated by the approximate technique.

The next section of this report will discuss the progress made on these

goals during the past year,

II. PROGRESS SUMMARY

In this section, the work of the past year is summarized and is related
to the goals that were discussed above. Numerous references are made to
[7], which is the S.M. thesis of Siu-Kwong Chu that was completed under the
support of this grant. This thesis is included as Appendix A of this report

for easy reference.

2.1 Time-scaling of Continuous Time Models

In [8], the idea was put forward that when the time axis over which a
semi-Markov model of fault-tolerant system behavior evolves is scaled by a

small parameter §, the holding time densities in the model take the form

that is required for the application of the asymptotic theorems of [5,6]




provided the parameter § is proportional to €. This idea is explained
rigorously in section 2.2.1 of [7]. After introducing this time scaling, it
is possible to rederive the results that are of interest for asymptotic
approximations to the behavior of these semi-Markov models.

Let E be the state space of a finite state semi-Markov process that
evolves in continuous time t. Suppose that the process is observed with
respect to the scaled time t/8. Suppose further that the transition
operator of the process is such that its (j,i) element representing

transitions from state i to state jJ has the form:

PE. (L")

€ 1]
31 = in FJi(t /8) i,J ¢ E

where t' represents scaled time and where the eventual transition
probabilities pji take the form:

(k) _ (k)

pJi € qu 1,3 € E

€
pji -

(k)

€ qJi ie Ek' J e Ek

Here it is assumed that the state space E decomposes into weakly interacting

classes {E1, E2, ooy En}. It is also assumed that the pjf) for each EK sum

to unity, hence when ¢=0 the classes E, become noninteracting and each

i

describes a valid semi-Markov process.

i)

Now let Tﬁk be the sojourn time (in scaled time) of the process in

class Ek when it begins from state igE, and transits to class Er' Let

K

(1) (k) o

¢£i)(8) denote the characteristic function of Tag + Then, if the pyy  for

each k represent the transition probabilities of an ergodic Markov chain,




then the oii)(s) are independent of the superscript i and they take the
form:
k k
P00 g
ieE JeE
MOR 0 e
L *1 ) (é s a p(k) + € q(k))
ieEk JeEk € Ji "1 Ji
Ak/a

= Pry AJa +s

where the =«

ik) are the stationary probabilities of the ergodic semi-Markov

process associated with class Ek and the a,, are the mean holding times

Ji

associated with the FJi(t) in the original time scale. The quantities in

the second expression above are defined in [7, sec. 2.2.2]. Note that this
expression takes the form of the characteristic function of a Markov process

transition operator with evehtual transition probability prk and transition
rate time constant Ak/a. Thus, the interclass transitions are Markovian in

scaled time.

The proof of this result can be found in [7, sec. 2.2.2].

The derivation of the result expressed above makes possible the
analysis of continuous time semi-Markov models of fault tolerant system

behavior provided the model has ergodic classes (note the underlined

condition above). Many fault tolerant system models violate this condition,

as was discussed in the Introduction. However, many fault-tolerant systems
that do not employ irreversible fault isolation logic do produce models with

ergodic classes. Therefore, this result is a positive step toward analysis

of models for these types of systems.




The manner in which the result above can be used for such analyses is
as follows. Suppose a model for a fault tolerant system has been
constructed and one is interested in calculating the state probabilities for
the model at some relatively large value of time t in order to assess the
reliability (or some other status-related property) of the system. Suppose
further that the model satisfies the conditions stated in the result above.
Then the approximate class occupancy probabilities at the desired time can
be calculated by scaling time appropriately, constructing the Markov process
that approximately governs interclass behavior from the result above (this
is called the enlarged process in [7]) and solving this relatively easy
Markov process problem. It is assumed here that the initial condition is
known for the state probabilities and therefore also for the class occupancy
probabilities. The results should be rescaled back to the original time
scale. Then, finally, the approximate state probabilities can be evaluated
by weighting the stationary probability distribution associated with each
class when ¢=0 by the appropriate approximate class occupancy probability.

The derivation of the result above and the construction of the
approximate evaluation method discussed in the preceding paragraph complete
the work necessary to satisfy Goal 1.

To illustrate the approximate evaluation procedure, a model for a
generic fault tolerant system was constructed and solved using both "brute
force™ numerical convolution techniques and the approximate technique
described above. The system consisted of three components where at least
one unfailed component must be available for the system to remain operating.
It was assumed that the failure diagnosis algorithm used sequential tests in
combination with logic that is described in detail in sec. 3.1 of [7]. The

tests were assumed to have second order Erlang distributions for their times
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to decision. The logic included the possibility of recovering components
that have previously been diagnosed as failed, thereby leading to a model
that has ergodic classes. The complete model is described in secs. 3.3
through 3.5 and Appendix C of [7]. The model has 9 states which decompose
into three classes when the small failure rate is set to zero.

The exact state probability histories are obtained numerically and are
described in chapter 4 of [7]. It should be noted that a very large amount
of computational effort was required to generate these exact solutions. The
approximate model is also constructed and solved in chapter 4 of (7). The
approximate solutions were, for the most part, obtained with just the aid of
a hand calculator. Only when complete time histories were desired was it
necessary to resort to the use of a computer., Upon comparison of the
results, one finds that the largest error in the evaluation of any of the
state probabilities by the approximate method for this example is less than
19 of the value obtained by numerical means (which itself is subject to a
small amount of error) for times greater than the longest mean holding time
of the sequential tests, where the assumed mean time between failures is 3
orders of magnitude longer than this.

These results are very encouraging, but they are not sufficient to
conclude that the approximate technique always works so well. In order to
further investigate the properties of the approximate technique with the
time scaling included, a number of four-state semi-Markov models were
examined. These models were chosen to reflect various characteristics that
larger fault tolerant system models tend to possess. By keeping the
dimension at Y4, however, it is possible to generate the true behavior of the

model with relative ease whereas models of larger dimension are extremely

difficult to solve (recall the comments above regarding the nine-state
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model). Even four-state models are difficult enough to solve, however, that
symbolic manipulation was necessary to generate the exact solutions. This
is true despite the fact that none of the holding time densities in the
models were assumed to be any more difficult than second order Erlang.

The five cases of four-state models that were examined are discussed in
detail in chapter 5 of [7]. The approximate method produced very accurate
results in every case that was examined. The comparison between the results
was almost always exact to 4 decimal places except in the very early time
periods before the startup transient of the process has decayed.

One of the cases of four-state models that was examined was a model
that did not have ergodic classes (Case IV). The fact that the approximate
technique still produced extremely accurate results suggested that we
investigate further the ergodicity condition and its impact on the results
from which the approximate method i{is derived. The work accomplished in this

area is described in the next section.

2.2 Relaxation of Ergodicity Conditior

Many fault tolerant systems yield generalized Markovian models of their
behavior that decompose into classes that satisfy all of the conditions for
applying the approximate technique except the condition that they be ergodic
when ¢=0. This is typically the result of irreversible logic structures in
the RM algorithm for the system such that diagnostic decisions alone can
permanently eliminate a component from use.

However, in the analysis of four-state models discussed above, it was
noted that excellent results were obtained when the approximate method was

applied to a case where the model did not possess ergodic classes. A single

example is not sufficient to prove any statement regarding the applicability




of the approximate method to models with nonergodic classes. However, these
results did motivate us to examine the underlying reason that the method
worked for this particular example.
The result of this investigation is the following theorem regarding
models with nonergodic classes:
Theorem 1: Let a semi-Markov process depend upon ¢ such that it can be
decomposed in the manner described in section 2.1, Suppose in addition

that the imbedded Markov process transition operator Pk assoclated with

the kth class when e=0 satisfies:

n
1 m
lim ) Pk-[vv---v]
N+« m=1

where v is a constant vector, for every k. Then the interclass
transition behavior approaches the same enlarged Markov process behavior
that was described in section 2.1 as ¢ approaches zero.

The proof of this theorem appears in chapter 6 of [7].

Theorem 1 considerably widens the class of semi-Markov models to which
the approximate technique can be applied because the condition stated in the
theorem is weaker than the ergodicity of the classes that was required by
the previous results. Many fault tolerant system models possess the
properties stated in the conditions of Theorem 1.

The analysis leading to Theorem 1 led us to consider the specific
situations in which the conditions of the theorem are satisfied. This

investigation led to the following refinement of the theorem: )
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Theoren 2: Let a semi-Markov process depend on € such that it can be
decomposed into classes as prescribed in section 2.1. The transition

operator Pk of the imbedded Markov process associated with the kth class

when e€=0 will satisfy the condition of Theorem 1 {f:

1. The kth class is ergodic, or

2. Pk has one and only one eigenvalue of unity.

The proof of this theorem also appears in chapter 6 of [7].

It should be emphasized that Theorem 1 is still only a sufficient
condition for the approximate technique to yield accurate results as the
small parameter e becomes small. In other words, there may exist semi-
Markov models that do not satisfy these conditions whose behavior can still
be approximated well by the approximate method. Theorem 2 provides a more
restrictive but more easily checked sufficient condition.

Some examples of models that do and do not satisfy the sufficlent
conditions of Theorem 1 are presented in chapter 6 of [7]. One example in
particular that does not satisfy the conditions includes a class that
contains multiple trapping states when e=0, We have begun an effort to
extend the results to this case as well by searching for conditions under
which the approximate method succeeds in approximating the interclass
behavior.

The derivation of the two theorems discussed above represents our

progress thusfar on Goal 2.

2.3 Discrete Time Models

All of the results described so far in this report have applied to

continuous time models of fault tolerant system behavior. However, because
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the RM algorithm for the system is usually implemented on a digital computer
with a significant time delay between successive applications of the
diagnosis tests, fault tolerant system models are often purely discrete time
in nature. Efforts have been made during the past year to derive results
for discrete time processes that mimic those discussed above for continuous
time processes. This section reports on these efforts.

Much of the work that has been accomplished this year for diacrete time
models has related to the adaptation of Korolyuk's limit theorem for semi-
Markov processes [5] to semi-Markov chains. In addition, a limit theorem
with time scaling for semi-Markov chains was also developed. The theorem
statements are summarized helow.

An important result that will be referred to in both theorems discussed
is presented in Lemma 3.

(k (k)

)
- [pJi

LEMMA 3: Let P ] represent an imbedded Markov chain operator of

a semi Markov chain Ek. Consider the system of equations below:

(1)

i ),y k) _
. (2) ) (z) p 0

¢
JeEk rk Ji

The solution of the system of equations is independent of the
superscript, that is:

(1)
¢rk(m) = 4 (m) ¥ ieEk

if and only if the imbedded Markov chain operator represented by the

(k)

transition probability matrix {pJi

|1,J€E, } has at most a single unit

magnitude eigenvalue,.
Thus, any ergodic imbedded Markov chain operator (for which all

eigenvalues have less than unit magnitude) will satisfy Lemma 1. In
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addition, any monodesmic imbedded Markov chain operator (one that has only
one trapping or absorbing state, and hence a single unit magnitude
eigenvalue) will also satisfy Lemma 1. This assertion is similar to Theorem
2 for continuous time models.

The following theorem describes how a semi-Markov chain which is
dependent on a small parameter ¢ can be approximately described by a Markov
chain. This theorem is derived based on the results for semi-Markov

processes in [5].

SemirMarkov chains are characterized by a finite set of states and by a

distribution of the holding time or sojourn time in each state that is

arbitrary for each state to which a transition can occur. A semi-Markov
chain specializes to a Markov chain when the holding times for each state
are ldentically exponentially distributed. The semi~Markov chains here are
assumed to depend on a small parameter e such that the state space can be
decomposed into disjoint classes of states where the probabilities of
departure from each class tend to zero along with €. In addition, the total
sojourn in each class is assumed to have a non-degenerate distribution in
the limit as € + O.
THEOREM 8: A Limit Theorem for Semi-Markov Chains
Let the set E of states of the semi-Markov chain be expressible as a

sum of disjoint classes

Ne
E= J E ke (M| k=1,2...N (2.1)
k
Ke1
Let Y:t) be the sojourn of the semi-Markov chain in class Ek when it

starts from state i and moves to class Er' The following two

conditions are assumed to hold




-

1. The elements of the core matrix sequence {gji(m)li,JeE} specifying

the semi-Markov chain depend as follows on the small parameter ¢:

3)

€ €
gji (m) = pJi hJi(E (2.2)

and where hji(O) = 0, The p§1 may be expanded in a Taylor series

about € = 0, Taking only linear terms in e€:

pji - pjt) - € qgt) + ... +0(e); 1,3 € Ek (2.3)

-c q§:) tov0(e); LeE ; JEE,

The imbedded Markov chain obeys the usual Markov chain properties:

(k) (k)
1 Pjy = 1i and pgy

JeEk

e [0,1); ¥i,J e E ; ¥keM (2.4)

k;
and

2. The imbedded Markov chain defined by the transition probability

k)l1

matrices {pj1

,JEek ¥ keM} are ergodic with stationary )

probabilities {wik)|1eak ¥ keM}.

Then:
1lim Pr{Y(i) <t} =Y. [1- exp(-A t/T)] (2.5)
rk - rk Kk * "
€+0
where: A
) L6 q(kr) :
ieEk i i ‘
Y =
rk (k) (k)
125 o9 ]
K g
'.
U
i
t
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I (k) (k)
1esk“1 Y
A = ,
k ) 'Q) a(k)
ieE 1 i
K
Here:
qirk) - 1 q;f) '
JEEP
qik) - 1 q;:) '
JeEr
(k) (k) =
a = 1 py Yoo
i seE, CTRERRT
Y - Y mn, (m) .
T T

Although the above theorem i{s useful, it is not directly
applicable to most fault tolerant system models for two reasons: (1)
the imbedded Markov chains for such models are usually non-ergodic, and
(2) the holding time density functions are u;ually not dependent on m/e
but only on m. Hence, a necessary adjustment that must be made in the
above theorem is to determine what conditions must be satisfied by the
imbedded Markov chain (thus Lemma 3) and to incorporate time scaling

into Theorem 4.

THEOREM 5: A Limit Theorem With Time Scaling for Semi-Markov Chains

Let the set E of states of the semi-Markov process be expressible

as a sum of disjoint classes

E= I E le (M| ke=1,2..8
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(1)
Let Yrk

be the sojourn of the semi-Markov chain in class Ek when it
starts from state i and moves to class Er‘ Let the following two

conditions hold for the semi-Markov chain:

1. The elements of the core matrix sequence {gji(m)li,JeE} specifying

the semi-Markov chain depend as follows on the small parameter §:

€ € m
854 (m) = Pyy hji(g) (2.2)

and where hji(o) = 0., The pji may be expanded in a Taylor series

about € = 0, Taking only linear terms in €:

pji - pjf) - ¢ qgf) + oo+ 00e); 1,5 € B (2.3)
-c qgf) $ .+ 0(e); LeE 5 JEE,

The imbedded Markov chain obeys the usual Markov chain properties:

) p;f) = 1; and pj:) €[0,1); ¥ 1,J e E ; ¥keM (2.4)

JeEk

and

2. The imbedded Markov chains defined by the transition probability
matrices {p;f)li,JeEk ¥ keM} have at most a single unit magnitude
eigenvalue (hence, ergodic or monodesmic) with stationary

probabilities {ufk)liesk ¥ keM}.

Then:
1im Pr{Yrk <t} = Yk [ - exp(-Akt/aT)] (2.5)
€*0
where Yrk' Ak’ qirk), qik). and aik), were all defined in Theorem 4 and

a is defined below.
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The results of Theorem 5 are being applied to examples of fault
tolerant control systems for which semi-Markov chain reliability models have
been derived. Three simple reliability models have been developed to date.
The first is for a simple component monitoring system. A single non-
essential component has a sequential test monitoring faults for the
information of the pilot. This produces a 3-state model that can be
decomposed into two classes. The second model is of a single-component dual
redundant (SCDR) system. This model has six states and three non-ergodic
classes. When a false alarm recovery test is incorporated into the second
system, a model with nine states and three ergodic classes results.

These three models will be analyzed by applying the results of Theorem
5. The probabilities of occupying each class will be computed and will be
compared to a numerical or analytical computation of the 3ame quantities.

This work and its continuation represents our progress so far on

Goal 3.

2.4 Generation of Exact Results

When approximate answers are derived to problems for which it is
difficult or impossible to generate the exact answer, a question arises
regarding the means by which these approximate answers can be validated.
Obviously, it is the intent of the problem-solver to avoid the difficult
procedure of generating an exact answer. Yet, without the exact answer, how

can one be certain that the approximate answer is accurate? We face that

X W L0,
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dilemma here in calculating our approximate answers to fault tolerant system
model behavior.

In section 2.1, we limited our consideration of model structures to
four-state models with Erlangian holding times so that we could generate the
exact answers relatively easily. 1In fact, as we discussed in section 2.1,
it was still necessary to use a symbolic manipulation program to derive the
true results because the numerical calculations were cumbersome.

Discrete time models of fault tolerant system behavior tend to be just
as cumbersome. In selecting the three models of fault tolerant system
behavior to analyze, we have been careful to choose simple ones. This
allows us to analyze their behavior analytically before applying the
approximate technique.

In this regard, our efforts have been directed toward using a symbolic
manipulation package (MACSYMA) to obtain, in closed form, the z-transform
solution to the discrete time models (that is, an expression for the state
occupancy probability vector). From the analytical solution, a truncated
Taylor series expression in € can be found that can be compared with the
results of applying Theorem 5. This will provide an expression for the
first truncated term of the Taylor series and thus will provide an error

bound on the approximation for these models.

In the proof of Theorem 5, all order €2 terms in the total probability
equation are ignored. The resulting expression contains a zero and first
order ¢ term. The zero order term is shown to vanish in the limit as €
approaches zero. The remaining first order e term i3 left and ¢ may be
cancelled, leaving the Theorem 5 result. However, a first order
perturbation of the Theorem 3 result can be obtained by expanding the total

3

probability equation to second order in € and ignoring order e~ terms.

...............



Again, the zero order term vanishes in the limit. With the remaining terms,

¢rk(z) is found, but the new expression contains terms proportional to €.

Including this perturbation term in € should improve the numerical results
that can be obtained for the class occupancy probabilities. This will be
discussed in future progress reports.

This constitutes the progress we have made so far on Goal 4,

II1. PAPERS AND PRESENTATIONS
No papers were derived from this work during this year. However, a
paper is in progress based upon the work reported in sections 2.1 and 2.2

that will be submitted to an archival journal, probably Mathematics of

Operations Research. Also, one S.M. thesis was completed this year, namely

that of Siu-Kwong Chu. This thesis [7] is included here as Appendix A.

A presentation on this work and other fault tolerant system evaluation
work was given by Prof. Walker at NASA-Langley Research Center in March. 1In
addition, Prof. Walker has been invited to speak as part of an aerospace

systems workshop at the American Control Conference in Seattle in June.

IV. PROJECTIONS FOR THIRD YEAR OF WORK
During the third year of work, the goals of the program are those that
were stated in the renewal proposal. These are:

1. Investigate the possible further weakening of the conditions sufficient
for the validity of the approximate results for continuous time models
beyond the Theorems of section 2.2. Our primary emphasis here will be
continuous time models for which at least one of the classes of the

nonperturbed process contains more than one trapping state.

24




2. Continue the derivation of analogous results for purely discrete
parameter models.

3. Complete the symbolic derivation of analytical solutions for the three
models described in section 2.4, Use the results to find either an
alternative form for the discrete time approximate results or an error
bound in terms of € on the approximate results. Generalize the error
bound, if possible.

4, Use the sampled Monte Carlo techniques of [9] to generate valid "truth"

results with which the approximate results can be compared.

V. FINANCIAL AND MANPOWER STATUS
The manpower complement remained unchanged from the proposal.
Professor Bruce K. Walker continues as the Project Director, devoting
approximately 20% of his academic year time and 60% of his summer time to
the project. The two graduate students, Siu-Kwong Chu and Norman M.
Wereley, continue as full-time graduate Research Assistants supported by the
project, Margaret McCabe provides clerical assistance. No changes are
anticipated from the manpower arrangement proposed in the renewal proposal.
The financial aspects of the project have also followed the proposal
closely with one exception. The cost underrun from the first year was added !
to the second year budget, partly as capital equipment funds. Air Force
approval was given for this change by Capt. Dwight McGhee in a letter dated
11 December 1985. The capital equipment money was used to purchase an IBM )
Personal Computer Model AT, which is now the primary means of computation .

and wordprocessing for all three participants in the grant.

25

KK Tak gt 0 K M T Y p
AR U NSO SO Rt D l“‘o\,‘qh."a‘.'l‘.'u‘,'..,N'.‘.., AR SR R AN _.l.. R T N T .‘.\“\,‘ Pl



REFERENCES

{11

(2]

£3]

[u]

(5]

(63

(71

£el

M. Coderch, A.S. Willsky, S.S. Sastry, and D.A. Castanon, "Hierarchical
Aggregation of Singularly Perturbed Finite State Markov Processes,"
Stochastics, 8:259-289.

M. Coderch, "Multiple Time Scale Approach to Hierarchical Aggregation
of Linear Systems and Finite State Markov Processes," Ph.D. Thesis,
Dept. of EECS, M.I.T., Cambridge, MA, 1982,

X.-C. Lou, J.R. Rohlicek, P.G. Coxson, G.C. Verghese, and A.S. Willsky,
"Time Scale Decomposition: The Role of Scaling in Linear Systems and

Transient States in Finite State Markov Processes," Proc. of 1985

American Control Conf., Boston, June 1985,

J.R. Rohlicek, "Multiple Time Scale Approach to Decomposing Finite
State Markovian Processes and Positive Systems," Ph.D. Thesis, Dept. of
EECS, M.I.T., in progress.

V.S. Korolyuk, L.I. Polishchuk and A.A. Tomusyak, "A Limit Theorem for
Semi-Markov Processes," Kybernetika, 5:4:144-145, July-August 1969.
V.S. Korolyuk and A.F. Turbin, "Asymptotic Enlarging of Semi~Markov
Processes with an Arbitrary State Space," in A. Dold and B. Eckmann

(eds.), Lecture Notes in Mathematics 550: Proc. of 3rd Japan - USSR

Symp. on Probability Theory, Springer-Verlag, 1972.

S.-K. Chu, "Approximate Behavior of Generalized Markovian Models of
Fault-Tolerant Systems," S.M. Thesis, Dept. of Aero. & Astro., M.I.T.,
Cambridge, MA, February 1986.

B.K. Walker, S.-K. Chu and N.M. Wereley, "Annual Progress Report on
Grant AFOSR-84-0160: Approximate Evaluation of Reliability and

Availability Via Perturbation Analysis," Dept. of Aero. & Astro.,

M.I.T., September 1985.




{9] E.E. Lewis and F. Bohm, "Monte Carlo Simulation of Markov Unreliability

Models," Nuclear Engineering and Design, 77:49-62, 1984,




APPROXIMATE BEHAVIOR OF
GENERALIZED MARKOVIAN MODELS OF
FAULT-TOLERANT SYSTEMS

by
Siu Kwong Chu

S.M. Thesis




APPROXIMATE
BEHAVIOR OF
GENERALIZED
MARKOVIAN MODELS OF
FAULT-TOLERANT
SYSTEMS

by
Siu Kwong Chu

B.Sc., University of Newcastle-upon-Tyne (1982)

SUBMITTED TO THE DEPARTMENT OF
AERONAUTICS AND ASTRONAUTICS IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF

MASTER OF SCIENCE IN
AERONAUTICS AND ASTRONAUTICS
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1986

Copyright © 1988 Massachusetts Institute of Technology 1986

Signature of Author t [/ — Z—/‘/r

Department of ATonautics and Astronautics

February , 1986
Certified by m
P

rofessor Bruce K. Walker
Thesis Supervisor

Accepted by

Professor Harold Y. Wachman
Chairman, Departmental Graduate Committee

L]

- L] -
A AP . 1 Ry o "
I . IR A AL A » 4% » 0 LA BT T 8T B, W

'n " Y " ' .‘ o SRy " "--'\"n' \‘ﬁ.‘\. Sy et 'r.‘-' .



-2-

APPROXIMATE BEHAVIOR OF
GENERALIZED MARKOVIAN MODELS OF
FAULT-TOLERANT SYSTEMS

by
Siu Kwong Chu

Submitted to the Department of Aeronautics and
Astronautics on Jsnuary 23rd., 1986 in partial fulfillment of
the requirements for the degree of MASTER OF SCIENCE
IN AERONAUTICS AND ASTRONAUTICS.

Abstract

Problems associated with the evaluating state probability histories of large state
space models of fault-tolerant system are explained, and it appears that Korolyuk's
Limit Theorem for semi-Markov processes may be a solution to these problems that
approximates the aggregated original semi-Markov process by a reduced order
Markov process. The Theorem is modified and extended to apply to approximate
fault-tolerant system models in a new time scale. The approximate technique is
then developed by expanding the approximate Markov process state probability
histories with the stationary probability distributions associated with the
aggregated groups of states of the original semi-Markov process. The technique is
demonstrated with a realistic 9-state model and five 4-state models which mimic
the class to class transition structure of typical fault-tolerant system models, and
the results show that accurate approximation is achieved for these examples after a
short transient period. In addition, the ergodicity sufficient condition imposed on
the semi-Markov process to be approximated is relaxed. As a result fault-tolerant
system models with certain types of non-ergodic classes can also be solved by the
approximate technique.

Thesis Supervisor: Professor Bruce K. Walker
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Notation

state space of semi-Markov process
k-th partition or class of state space of a semi-Markov process

cumulative probability density function for time to transition from
state i to state j

holding time probability density function for transitions from state
i to state j

holding time probability density function matrix

eventual transition probability from state i to state j of perturbed
semi-Markov process

eventual transition probability from state i to state j in class k of
non-perturbed semi-Markov process

eventual transition probability from aggregated “state” k to
aggregated "state” r of the approximate Markov process

eventual transition probability matrix
transition kernel matrix
total probability in class i of perturbed semi-Markov process

kernel element for transition from state i to state j of perturbed
semi-Markov process

waiving time greater than (.)
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time scaling factor
small parameter representing the constant failure rate

transition kernel for class k to class r tranmsitions of the
approximate Markov process

interval transition probability matrix
parameter for false alarm decision time probability density function
parameter for isolation decision time probability density function

parameters for failed/unfailed indication decision time probability
density function of the self-test given the component is working

parameters for failed/unfailed indication decision time probability
density function of the self-test given the component is failed

constant transition rate out of aggregated Tstate” k of the
appproximate Markov process

probability in state i of semi-Markov process

total probability in class k of the original semi-Markov process
probability in state k of the approximate Markov process (or
enlarged process) i.e., approximate total probability for class k of

the original semi-Markov process

stationary probability in state i which belongs to class k of the non-
perturbed semi-Markov process

stationary probability in state i of the imbedded non-perturbed
Markov process for class k of the semi-Markov process
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% mean holding time of transition from state i to state j

L mean holding time in state i without regard to the destination

r mean holding time of a semi-Markov process

1{2 the sojourn random variable of the semi-Markov process in E;

when it starts from state i, i € E’k and moves to Er
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BITE Built-In Test Equipment
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PDF Probability Density Function
PMF Probability Mass Function
RM Redundancy Management
SL System Loss
SPRT Sequential Probability Ratio Test
VSST Vector Shiryayev Sequential Test
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Chapter 1
Introduction

1.1 Background

A fault-tolerant control system is a system designed with redundant capacity
to perform its mission. That is, it can do its job using more than one configuration
of its components, e.g. semsors and actuators and information processing
capability. The on-line detection and isolation of failed components and the
reconfiguration of the system’s architecture is performed by the system’s
Redundancy Management (RM) scheme. The [ault-tolerant approach enhances -
system reliability and performance. There are many application areas where ultra-
high system reliability is necessary or desirable. One such area is the control of i
nuclear power plants where the consequences of improper control system behavior
may be serious indeed. There are space missions for which the desired operational

lifetime of the spacecraft is many years. The air traffic control system and many

R

military systems are also subject to very high reliability requirements. There is
also a desire for increased reliability in computerized banking systems, chemical

process control systems, medical monitoring systems, transportation systems, and

- e N AP

many more. As a result, growing attention is being given to the design of
components for long life, to quality control during manufacture, and testing and
maintenance policies which enhance reliable system operation. Despite these efforts
to improve the reliability of individual components, the resulting system reliability
is still often inadequate for some reliability requirements. As a result, there is

increasing interest in fault-tolerant system designs which allow components to fail
i
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but still provide a means for the system to continue to function.

The growing use of fault-tolerant system designs has in turn spurred interest
in methods for assessing the reliability and performance of such systems. The
traditional methods of reliability evaluation are based on combinatorial analysis of
combinations of component failures [7] . They generally consider only the
probabilistic occurrences of componert failures and seldom account for the
probabilistic nature of the outcomes of any on-line monitoring test that might be
used by the fault-tolerant system in an effort to detect and identify such failures
and to reconfigure the system to remove 'from use any failed components. In
addition, classical reliability analysis produces as its sole result the probability that
the system will maintain its integrity over the duration of its operating time. No
information is provided on the performance of the system during the transient

period of the mission.

Since classical reliability analysis fails to quantify fault-tolerant system time
behavior, other alternatives must be considered. Naturally, in this age of the high-
power main-frame computer, Monte Carlo simulation is one option. This method
consists of building, with a computer program, a probabilistic model of the system
under investigation. If the system of interest is properly modeled for various
random effects that bear on it and sufficient simulation runs are obtained, then
essentially any aspect of the system performance can be statistically evaluated from
the simulations. However, as is pointed out in [10], the drawback of Monte Carlo
technique stems from the fact that a sufficient number of simulations must be
available. For a system with a component failure rate as low as 10°Y per sec., the
number of simulations needed to generate statistically significant results about
failures must exceed one billion. Furthermore, the fault-tolerant system to be

simulated is frequently rather complex, often involving multiple instruments and a
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hierarchical architecture for the Failure Detection and Isolation (FDI) logic.
Consequently, obtaining reliable results by Monte Carlo technique is often

prohibitively costly in terms of the required computational effort.

The use of Markov chain theory [8, 6] has shown promise as a means for
evaluating the performance of those fault-tolerant systems which employ FDI tests
that are of the single sample variety, that is, the information that is used for FDI is
gathered and discarded at each time sample. However, single sample FDI tests
generally have a relatively high likelihood of decision errors, particularly in noisy
signal environments. In such situations, fault-tolerant systems are always equipped
with digital computers that execute FDI tests based on several samples of the
monitoring data at each time sample. Such tests include moving window tests and
tests of a completely sequential nature. Such tests are not memoryless. Therefore,
the systems in which they are employed are not conducive to the compact
treatment by the application of Markov chain analysis that is possible for systems

employing only single sample tests.

The Markov modeling technique mentioned in the previous paragraph must
be generalized in order to capture the non -memoryless nature of the sequential RM
strategy employed in many fault-tolerant systems. More specifically, the model
must account for the time delays associated with processing a sequence of
observations before a FDI decision is made. Some effort has been made to analyze
such systems and it appears that the generalized Markovian (or!semi-Markov)
modeling methods (10, 8] are applicable to some systems of this type. In addition
to the necessary assumptions, a problem with this reliability evaluation method is

that the large number of states in the model causes the computation of results to

involve excessive amounts of computer storage and computation time. (Usually,

each state in a generalized finite-state semi-Markovian model of fault-tolerant
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system behavior represents a particular combination of specific component failure
modes and of RM decisions.) The reason for this for both continuous time and
discrete time models is as follows: For quantitative continuous time system
performance analysis, the state probability distribution x(t) at every time t must be

evaluated. With known #(0), standard time-invariant semi-Markov theory yields,

(1) = #(t)x(0) (L1)

where &(t), interval transition probability matrix, is the solution of the following
matrix convolution integral equation (see appendix A.2 for the details of the

derivation, and the notations),

() = > Wt) + fo tdrdi(t—r)[PtiH(r)], P(0)= I (1.2)

The above equation is in a form that can be solved analytically by the Laplace
transform technique. It is not difficult to obtain #(t) in closed form for systems
that comprise only two or three states. However, for complex systems with a large
number of states (for example, the model for a dual-redundant engine controller has
30 states [2] flight control system models will have many more), it will become
intractable to obtain a closed form solution even with the help'l of symbolic
manipulation software, e.g. MACSYMA. The reason is as follows: Solving Eq. (1.2)
for &(t) involves the problem of inverting an N x N matrix symbolically, where N is
the number of states of the system model. Unlike the case in numerical analysis
where the number of operations required for a matrix inversion is on the order of
N3, in symbolic inversion the number of operations for a N x N matrix whose

elements are as simple as a single term function of s is on the order of N!. It should

also be pointed out that a symbolic operation is also more complicated than its
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counterpart in numerical operations, which is usually a floating point
multiplication. In addition, the computer memory required for storing intermediate
expressions is extremely large. So the problems associated with memory storage
and computation time prohibit the use of a symbolic manipulation program ia
solving for #(t) analytically for a continuous time model. On the other hand, for
discrete-time semi-Markov models, Tyr the state probability distribution at time

step k with known #(0), can be expressed as,

#(k) = $(k)x(0) (1.3)

where &(k) is recursively generated by (see appendix A.1 for the details of

derivation and notations),

k
#(k) = > Wk) + Y @(k—m)[PoH(m)], #(0)=1 (1.4)

ma=(
It can be seen that a convolution sum is invotved. This implies that for a system

with N states, approximately 2kN? values must be stored in order to compute $(k)
and hence mk). For N = 20 and k = 100,000 as might be the case for a simple
flight control system operating with RM updates at a rate of 50Hz for 35 minutes,
the storage required is approximately 80x10°% values or 640 megabytes of storage for
accurate single precision state probability distribution calculations. The number of
floating point multiplications required for calculating #(100,000) is approximately
7x1012.  This poses the same problem as the continuous time model. These
computational and memory burden problems encountered in the reliability and
performance analysis of complex fault-tolerant systems employing non-memoryless

FDI tests provides the motivation for the work described in this thesis.

The goal of this work is to reduce the problems encountered in complex
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system reliability analysis by expanding upon the asymptotic approximation
technique for semi-Markov processes described in (4, 5] and applying them to fault-
tolerant system models. The idea, basically, is as follows: Consider a time-invariant
finite-state continuous parameter semi-Markov process whose state probability
distribution is given by x(t) for ¢ > 0 with 7{0) known. Then x{t) can be evaluated
according to Eq. (1.1) and (1.2). Suppose the process depends on s small parameter
€ such that the state space of the process can be partitioned into disjoint classes

E, ...Ey when ¢ = 0. That is, no classes can communicate with any of the other

l’
classes when ¢ is zero. Suppose further that the Probability Density Functions

(PDF's) that govern the transitions between states also depend on ¢ i‘n the "right”

form (as will be explained in Chapter 2) and let #°(t) be the probability distribution '
associated with this aggregated grouping of states. Then it can be shown [11] that
7°(t) evolves according to the Kolmororov backward equations governing a time-
invariant Markov process, that 1r: ) = Eli_r.no Tie E, 7, (t/e) and that the '
parameters defining the Markov process can be derived from that of the original
semi-Markov process. In less rigorous terms, this means that the long-term
behavior of the original model, that is the distribution n'(")(t/e) after it is
aggregated, is asymptotically well-approximated by the distribution ”fk)(t) which
evolves as a Markov process with known transition behavior as the small parameter
¢ nears zero. If a stationary probability distribution 1_r(k) exists for each disjoint

class of states E,, then the approximation for the probability in state i is [11],

k)

m ()= w (et) (1.5) .

As can be seen, the approximate technique involves two elements, namely the
stationary probability distribution and the approrimate Markov process (or enlarged

process). These results are also applicable to discrete-time time-invariant finite
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state semi-Markov models [12].

The application of these results to the reduction of the complexity of the
reliability evaluations based upon generalized Markovian models is reasonably
straight-forward if the system model has all the characteristics mentioned above.
Most fault-tolerant systems produce generalized Markovian models that are
approximately in the form necessary to apply these resuits because the rarity of the
component failure events relative to the rate at which RM decisions are typically
made yields the small parameter ¢ which must be present in the characterization.
A problem typically arises with the form of the state to state transition holding

time density functions, this problem, however, will be dealt with in this thesis.

1.2 Organisation of Thesis

The mathematical tool that is used to model fault-tolerant systems is the
theory of semi-Markov processes. They are very similar to Markov processes but
with one more degree of freedom that make them well suited for capturing the
random delay behavior of RM decisions for nonmemoryless tests. Asymptotic
enlarging of semi-Markov processes [4, 5] is the primary tool that is used to
accomplish the goal of this thesis. However, general fault-tolerant systems yield
semi-Markov models whose state to state transitions do not behave the same as
that described in the references there. Therefore, the theory will be extended here
to apply to typical fault-tolerant system models and the parameters for the

resulting approximate Markov processes will be derived in Chapter 2.

In Chapter 3, the structure of an example fault-tolerant system is described

and the assumptions used in the model construction for it are stated. After

defining all the system states, a 9-state transition kernel matrix is constructed
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which completely characterizes the system behavior. It is shown that the system
model can be decomposed into three classes of states when the component failure
rate is equal to zero. The transition kernel is then decomposed into the standard
form that will be used in the subsequent chapter to calculate the pardmeters of the

approximate Markov process.

Chapter 4 deals with the analysis of accuracy of the two elements of the
spproximation technique. That is, the evolution of the aggregated state probability
distribution calculated by the semi-Markov approach is compared with state

probability distribution of the enlarged process and the normalized probability

distribution is compared with the stationary probability distribution in each class.

The enlarged process approximation method is further tested in Chapter 5
with a general 4-state semi-Markov model. Five different cases are presented which
capture five different possible class to class transition types that might typically

occur in a fault-tolerant system model.

The sufficient condition imposed on the semi-Markov processes for the
approximate technique to be applied is relaxed and two theorems associated with

this relaxation are established in Chapter 6.

Some limitations of the enlarged process approximation approach are

examined in Chapter 7.

Chapter 8 concludes the thesis with a discussion of the work and its

contributions and suggestions for the directions that further research might take.
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Chapter 2 |
Theory of Enlarged Semi-Markov Processes

As it is pointed out in the Introduction, the mathematical tools used in this
thesis are classical semi-Markov process theory and the theory of enlarged semi-
Markov processes. Semi-Markov process theory is used to model the probabilistic
behavior of a fault-tolerant system. The resulting mathematical model of a
complicated fault-tolerant system with a large number of components and several
different levels of RM decisions is a high dimensional model with a large transition
kernel matrix. Usually, it is impractical to obtain the desired state probability
distribution history over the mission length due to limited computer memory
storage and the high computational cost. The enlarged semi-Markov process
theory, to be described in Section 2.1, is used to approximate the large dimension
semi-Markov process by a low dimension Markov process, which characterizes the
evolution of probability among groups of states. That is, each state of the enlarged
process represents a group of states of the original semi-Markov process.
Frequently in fault-tolerant system models, each enlarged process state represents a
group of states from the original model with the same number of working
components but having different RM configurations. However, enlarged semi-
Markov process theory as it appears in the current literature does not apply to
fault-tolerant system models, as will be explained in Section 2.2. Therefore, the
theory will be extended in Section 2.2.2 in order to apply it to fault-tolerant system

models.
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2.1 Korolyuk'’s Limit Theorem for Semi-Markov Processes

References [3,4] describe the conditions under which a perturbed semi-Markov
process can be approximated over long time frames by a Markov chain. There are
essentially two of these conditions. First, the kernel of the semi-Markov process
must depend on a small positive parameter ¢ in such a way that the entire space of
states of the semi-Markov process E can be split into disjoint classes of states
E= 22‘_1 E,, where the probabilities of departure from each class and of the
sojourn time in a given state both tend to zero with ¢ . The total sojourn time in
each class is assumed to have a nondegenerate distribution in the limit as ¢ — 0
(when e==0, the process will be referred to the non-perturbed semi-Markov process
while the original process will be referred to as the perturbed semi-Markov process).

Mathematically this condition can be expressed by the following equations,

€ . 8

Po()y=p,Ftle),  ijEE, (2.1)
B _e®  iicE.

p;,',={ Py ~ i AR (2.2)

k . .
‘q‘(j,-) 1€ Ek, JE Ek’
wherez p(jf)=l. i€E, 1<k<m
JEE,
where Pji is the eventual transition probability of the original process from state i

to state j, Fji(t/e) is the Cumulative Distribution Function (CDF) of the holding

time for transitions from state i to state j.

Second, the Markov chains defined by the tranmsition probability matrices
pg)(i,jEE, 1<k<m) , must be ergodic with stationary probability
distributions xf.k) (iEEk, 1 < k < m) When these conditions are satisfied by a

perturbed semi-Markov process, then its behavior can be approximated by a
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Markov chain. More specifically, if 11';) is the sojourn of the semi-Markov process in
class E, when it begins from state i and moves to class E_, then [4] shows that the
cumulative distribution function of the random variable can be expressed by an

exponential function when ¢ becomes vanishingly small:
lm P{A)<t)=p,(1-eH) (2.3)

As can be seen from the above equation, the dependence on i disappears on the
right hand side of the equation. That is, each state in class E, has the same
exponential holding time density function for transitions to class E, for all r. So all
the states in class E, can be merged together and the aggregated model has the

characteristic of a Markov process.

The second part of condition 1, defined by Eq. (2.2), is often satisfied by a
fault-tolerant system model. If the system components all have small constant
failure rates proportional to ¢, then each class of states for the enlarged érocess can
be formed by grouping together all the states that have the same groups of working
and failed components but with different statuses of the RM logic. The class-to-
class transitions are then possible only through the small possibility of failure of a
component. When ¢=0, i.e. when no failures can take place, the only transitions
that are possible are those within each class due to the outcomes of the RM
decisions. If there is Built-In Test Equipment (BITE) included in the RM system, a
component that was previously isolated as failed by the RM can be brought back
on line. For this kind of system, the imbedded Markov chain for each class is
generally ergodic. Then the second part of condition 1 is satisfied. The remaining
condition that has to be satisfied is defined by Eq. (2.1) or the first part of

condition 1. Usually, this condition is not satisfied by a fault-tolerant system

model. The reason is as follows: if ¢ is small, i.e. the Mean Time To Faslure
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(MTTF) of the components is large, say hundreds of hours, then the holding time
of the transition, particularly those within a class, is determined only by the noise
in the signals and the threshold set by the FDI test designer. So, as the failure rate
tends to zero, the RM decision delay will not be affected by the failure rate. So,
the transition kernel of a fault-tolerant system semi-Markov process model will not
take on the form implied by Eq. (2.1). Because Eq. (2.1) is not satisfied, the
enlarged process, if it can even be formulated, may be an invalid approximation to

the aggregated semi-Markov process model.

2.2 Extension of Korolyuk’s Work

As described in Section 2.1, the only condition in Korolyuk's theorem that is
not satisfied by fault-tolerant system is that the FDI decision delay, and therefore
the holding time probability density functions, does not depend on the small
parameter €. However, the state transition delay of a semi-Markov process would
be dependent on a small parameter mathematically if the temporal line on which
the delay was originally measured is scaled, say by a time scaling factor 6. In this
way, [ault-tolerant system models can be modified to satisfy all the conditions
required for the enlarged process results to be applied. Section 2.2.1 shows how the
transition kernels of a semi-Markov process depend on the small parameter § when
the process is characterized on a new temporal line. Section 2.2.2 will derive the
parameters of the Markov process that approximates the behavior of the

aggregated, time scaled semi-Markov model.
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2.2.1 Changing the Time scale of a Perturbed Semi-Markov Process

A fault-tolerant system model with a finite number of states evolving in
continuous time is a semi-Markov model which is completely characterized by its
transition kernel matrix. The standard form of the (i,j) element of the matrix is as

follows:
PJ.'. (t)= Pji hj‘.(t) (2.4)

where Pji is the eventual transition probability and hji(t) is the conditional
transition time probability density function for transitions from state i to state j.
The eventual transition probability is the probability that the process that entered
state i on its last transition will enter state j on its next transition. Before making
this transition, the process "holds” for a random time in state i, where the time is
governed by the conditional transition time probability density function. In fault-
tolerant systems with small component failure rates of order ¢, hji(t) is related to
the PDF's of the time delay of the FDI tests. Obviously, hji(t) does not in general
depend on e. However it will depend on another small parameter §, the time
scaling factor, if the original temporal line on which the FDI decision delay was
measured is scaled. If a stochastic process is observed in another time scale that is
1/6 times that of the original, then the holding time PDF hji(t) certainly will be
affected but the Pji will be the same because the eventual transition probability Pji
only characterizes the transition probability from state i to state j for the next
transition whenever it occurs. Therefore, it is not related to the time scale in
which the process is observed. However, the "new” holding time PDF is not
obtained by just replacing the argument of the original PDF by t/é because if the
original hji(t) is replaced by hji(t/é) for the change of time scale, then integration of

hji(t/é) from time t=0 to time t=00 does not produce 1. This means that hji(t/é)
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is not a proper holding time PDF. For a change of time scale of a stochastic
process, the CDF Fji(t) of the corresponding PDF hji(t) must be found, and the
argument of the CDF, t, must be replaced by t/6. Then the holding time PDF of
the process observed in the new time scale is h;.‘.(t' )= %,F j'(t’ /6). So, thé statistics
of the process in the new time scale depend on the small parameter §, the time
scaling factor. If 6 equals ¢, i.e. if the time scaling factor is equal to the failure rate
of the components, then the condition is satisfied. But é is not necessarily equal to
¢ for the derivation of the enlarged process and the enlarged process will be derived

in the next section.

2.2.2 Derivation of ¢, (s) of a Time-Scaled Perturbed Process

As pointed out in the last section, a time-scaled version of the original process
is not required in the evaluation of the approximate solution. So what follows is
the proof that the aggregated semi-Markov process in scaled time evolves as a
Markov process and the derivation of the parameters of the Markov process. A
similar approach to that of reference {4] will be used in this section for the proof

and the derivation of the parameters.

It is assumed that the system semi-Markov model depends on the small
failure rate parameter ¢ in such a way that the entire space of states of the model
E can be split into disjoint classes of states E={E,...E,} such that the
probabilities of departure from each class tend to zero as ¢ tends to zero. In
addition, if the process is observed on a temporal line 1/§ times that of the original
then the sojourn in a given state tends to zero as 4 tends to zero. To illustrate this
point, consider a process that is observed in terms of hours while it originally was
described in terms of seconds. Then the PDF describing the delay for transitions

from state i to state j will be "crushed” near the origin, so the sojourn in state i
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will be small in units of hours. Because the whole process is observed in a new time

scale, all of the Fji( ) will depend on the small parameter é.

A time-scaled semi-Markov process with the above characteristics can be

characterized by the following equations,

p. =

(%) (k) g
p.. —€q. i,JEE,
y { 7 k (2.5)

A
q¥  i€E,EE,
where p;i is the eventual transition probabilities of the imbedded Markov chain,
and the non-perturbeded eventual transition probabilites pg‘) satisfy the following
equation
Zp§¥)=l i€E, 1<k<m (2.6)
JEE,
and the element of the transition probability matrix can be expressed as,

P ;.‘.(t) = p;.'. Fu(t/6) ij€E (2.7)

where Fji(') is the CDF of the transition delay for the process in the original time
scale. Eq.(2.7) is a generalization of the form of the transition probability matrix

elements that define the semi-Markov process.

If 1{_2 denotes the sojourn of the semi-Markov process in class E, when it
starts from state i and moves to E_ and 69ji denotes the sojourn of the semi-Markov
process in state i, with the CDF Fji(t), while 6; are the indicators of transition from
state i to the state j, so the E{é;i}=p;., then the random quantities 1{2 can be

obtained by using the expression for the total probability :

’
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P{dl<ty= ¥ P{&=1, b+ <t}
J€E,
+ ) P{J;.,.=1, 5 ; <t}
J€E,

Hence

' t
) = J)
Pill<ty=% /OP{{k <t-u}dP)+ Y P
J€E, JEE,
Using the Laplace transform,

o) = E ()

(=}
Pyl = [ et ap 0
then eq.(2.8) becomes,
(1) (g} = (J') €
b ()= D 67 ()p5()+ D p}(8)

JEE, JEE,
Combining the Laplace transform of Eq. (2.7) and Eq. (2.5) :

o () = (o) — ¥ )(1 - dsa+ 00, jEB,

k ,
pie) =67 + 000,  JEE,

substituting these expressions in eq.(2.12), it becomes,

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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@ - Y @)=~ 3 (650,53 +ef)) 8o)
JEE, k€E,
+¢€ E qg.f) + Ofe 8) (2.15)
JEE,

Passing to the limit as ¢ and § — 0 , the functions ¢£2(s) are found to satisfy the

system of equations,

e - Y el =0 (2.16)
j€E,
It follows from this and the assumption that the imbedded Markov chain defined

by the transition probabilities pg‘) (1, j € E}, ) is ergodic, that ( see [1] ) the solution
of system Eq. (2.18) is independent of the superscript, i.e. for all i€ F,,
(')(s)-¢rk(s) Multiplying Eq. (2.15) by the stationary probabilities xgk) and

summing over all i € E, then cancelling ¢, the following is obtained,
k

Z (k)z: (5aa p(k)+€q(k))¢(ﬁ( Z (k)z q(k) (2.17)

or,
Z ,,S_/ﬂlz qgf)
€ E jGE
8, (8) = L~k | (2.18)
™ ) (k)z (%a p +Eq(lc))
ieEk JEEk
or,
- Al
¢.48) = p"’/—i;/a—+_a (2.19)
where
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a=2: (2.20)
€
3 ”gk)qgrk)
(€E,
=___ 5 2.21
s s
i€E,
) xf-")qf-”)
=€ 2.22
S SENC N (222
$ 1]
JEE,
qs_rk)= 2 qgf) (2.23)
JEE,
(k) (k) ‘
6= 4 (2:24)
JEE, |
ai‘k)= Z: ;P ﬁf) | (225)
JEE,
0= f EdF (2.26)

This completes the proof that any semi-Markov model with the properties
stated above can be approximated by a Markov process whose parameters were
| also derived. "The Markov process evolves in a longer time scale, i.e. 1/§ times that
of the original process. For instance, if =1/3600 and if the original semi-Markov
model evolves in seconds then the approximate enlarged Markov process will evolve

in hours.

One of the sufficient conditions in the derivation in this Chapter for the

enlarged process is that all the classes must be ergodic. This condition is not
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generally satisfied by all fault-tolerant system models. One non-ergodic model will

be examined in Chapter 5 and this issue will also be discussed in Chapter 6.

There are two parameters involved in the derivation, namely ¢ and 4, but the
parameter that actually affects the bebavior of the original semi-Markov process is
¢ while & is just a time scaling factor that relates the time scale of the approximate
Markov process and that of the original semi-Markov process. However, there is no
known way to show how small ¢ must be for the Markov process to be a good
description of the behavior of the aggregated semi-Markov model. So, assessment
of the effect of the small parameters will have to rely on empirical res!ults. For this

purpose, a fault-tolerant system semi-Markov model will be constructed in the next

chapter.

[
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Chapter 3

Construction of Fa.ult-Toleran!t
System Model

In the preceding chapter it was proved that under certain conditions such as
vanishingly small ¢ and ergodic classes, an aggregated, perturbed, time-scaled semi-
Markov process evolves asymptotically as a Markov process and the parameters of
the approximate Markov process were also derived. However, bounds on the size of
¢ are not known for the Markov process to be a good approximation of the original
semi-Markov process. As mentioned before, ¢ is usually the system component
failure rate. Then the question arises: For the approximation to be reasonably
good, would ¢ have to be extremely small ? In another words, do the MTTFs of the
flight control system components of subsystems have to be unrealistically big, say 5
years, which is equivalent to e=4.47x10", for the aggregated system model to
behave approximately as a Markov process ? This provides the motivation for the
construction of a generalized Markovian fault-tolerant system model in this chapter
for such investigation and for the demonstration of the approximation technique.
Since the base-line numerical results of the model will be calculated from semi-
Markov theory the system model will have to be small enough to avoid excessive
memory storage and computational burden, but it will be rich enough to include
sequential FDI tests and self-tests that are found in many fault-tolerant systems.
Since the theory developed in Chapter 2 is in the continuous time domain, the
model will also be formulated in continuous time. Any conclusions obtained in

continuous time theory should also be valid in the discrete time case.

-----
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This chapter begins with a section that describes the architecture and FDI
structure of an example fault-tolerant system. The next section states the
assumptions that are made in the model constructuon. The state definitions will be
presented in Section 3.3. The formation of the transition kernel of the semi-
Markov process is illustrated in the next section. Decomposition of the transition

kernel into the required form is included in the following section.

3.1 Structure of Three-Component Fault-Tolerant System

Suppose that the fault-tolerant system, or subsystem, comprises three
independent instruments which are measuring (or actuating or otherwise operating
on) a single scalar quantity. Such situations arise in such applications as flight
control, ( e.g. body rate sensors along a given axis and actuators for segmented
control surfaces ), highly reliable data processors, ( e.g. redundant synchronizing
clocks ). In the measuring instruments case, three independent observations of a
scalar quantity are available. With a set of two linearly independent parity
equations, those three independent observations are used to generate a vector parity
residual sequence. The RM in the system relies on the Vector Shiryayev Sequential
Test (VSST) which makes use of the vector parity residual sequence to detect and
identify the failure mode (see Section 3.1.3 of {10]). In contrast to other sequential
tests (e.g. the Sequential Probability Ratio Test or SPRT), there is no need with
the VSST for a separate isolation stage once a failure mode is detected. When an
instrument is identified as failed, it is removed from the system by the

reconfiguration scheme.

Once an instrument is removed from the system, a SPRT self-monitoring test

is initiated on the isolated instrument. The intent here is to model the

39 »
IR Wie WOL NIV A MY 4 LN e



-33-
implementation of BITE monitoring that is often included in real systems. The
sell-test produces either a failed or an unfailed indication on an isolated instrument
and when there are two consecutive indications that the instrument is unfailed,
then the instrument is brought back on line and the VSST FDI test is reinitiated. It
is assumed that no effort is made to detect further failures when two unflagged

instruments remain available.

3.2 Assumptions in Model Construction

The complete structure of the fault-tolerant system was described in the last
section. Before we proceed to comstruct the associated generalized Markovian
mode] several assumptions will be made. Some of these assumptions make this
example, and most other fault-tolerant systems easier to analyze by semi-Markov
technique. These assumptions are as follows:

(a) The time to failure in any particular instrument is exponentially
disiributed and independent of the status of other instruments and the RM

decisions.

(b) The probability of more than one event occurring during any dt is
negligible. These events include failures of components and decisions by
the RM system or by the self-tests.

Assumptions (a) and (b) are widely used in the analysis of fault-tolerant

system performance, so no further justification for them will be given here.

Following [10] , consider the situation where a failure occurs at some time
other than a state transition time, that is it does not occur at a renewal time
(where the VSST is reinitialized). In this case, VSST will have established values of

the test statistics which are distributed according to distributions conditioned on
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the hypothesis that no failure is present. Since the VSST is initialized with zero
test statistics, this implies that the test has a "head start” towards detection at the
time of a failure which is likely to yield a smaller delay to detection relative to the
delay associated with newly initialized test statistics. However, if the test has been
designed to achieve a low false alarm probability, the effect of assuming the
unaffected test statistics’ is at its initial condition should be minor relative to the
effect of making the same assumption for the test that is affected by the failure.
Thus:

(¢) For VSST and SPRT, the occurrence of a failure is assumed to coincide

with a renewal time for the test.

The last assumption below is an unrealistic one. However, it can still capture

the non-memoryless nature of the self-test:
(d) Failed and unfailed indications by the self-test are independent.

Although this assumption is not the case for a SPRT, under this assumption
and assumption (b), the time to failed and unfailed decisions will have the same
density function but with different eventual transition probabilities. If the failed
indication rate is higher than the unfailed indication rate given the isolated
component is failed, then there will be a higher eventual probability for failed
indications that will appear in the transition kernel. These assumptions will be

used in the transition kernel construection in Section 3.4.

3.3 State Definitions

We are now in a position to define the states for the semi-Markov model of
the example fault-tolerant system described in Section 3.1. The state

characterizations must include all the information necessary to formulate the

Yot e ..l‘.- 't -.* " " W v () W f ‘ ' ( ' " NN ¥ .," PR AY '1"'-’ VALY \'.'. \..". N
R R R .0 .

« B, W



e, Ft \ IS I IR 1 - RN I
< s et a',}';l.gkl" ) )

; -35-
[ transition kernels for the exit transitions out of each state. In this system, it is
{ necessary to know the following in order to characterize each state: .

1. The number of instruments that are available for use.
| 2. Of these, how many of them have failed.

3. If an instrument has been isolated by FDI as failed, the status of the
isolated component and the number of unfailed indications by the self-test
for this instrument.

Consider what happens if all of the possible system configurations are
enumerated as the system states. For example, suppose that the condition where
the first instrument is failed and the other two are working, in the case of 3
available instruments, is enumerated as state 1, the second instrument failed and
the other two working, in the case of 3 available instruments, is enumerated state
2, etc. Then the resulting model will have twenty-six states. However, since all the
instruments for this example are the same, there will be no difference between
states 1 and 2 in terms of the number of failed and working instruments or in terms
of how many failed instruments are still in use. Only the number of failed and
working instruments and the number of unfailed indications from the self-test are
necessary in the state definitions. So, by merging the states, the dimension of the

model can be greatly reduced, in this case to just nine.

The unacceptably degraded condition, which is a trapping state, is denoted by

SL ( system loss ) and is assumed to comprise all system configurations that involve N

two or more failed components. b

Let the state characterizations be denoted by the following notation where
brackets indicate sets of possibilities from which one and only one element will e

appear in each state characterization: o~
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f 0
3/ { g } 3 instruments available for use

0 C 0
2/ { } / { } / { } 2 instruments available for use
F w 1

In the case where 3 instruments are available for use, the leading 3 represents the
three available instruments. In the second entry, 0 represents no failure is present,
F indicates there is 1 failed component. The case of 2 failures is not included
because it represents a system loss. When two instruments are available for use,
the notation with the leading 2 follows the same convention as before and
represents the two available instruments. The 0 or F in the second entry indicates
the presence of no failure or 1 failure among the three components, respectively. C
or W in the third entry indicates whether the isolated component has been
correctly or wrongly isolated, respectively. The last entry represents the number of
consecutive unfailed indications from the self-test for this instrument. As an
example, consider the state denoted by 2/F/W/1. This means that two
instruments are available for use and one of the three is failed. Furthermore, the
isolated component has been wrongly isolated (i.e. it is not the failed one). Finally,

there has been one unfailed indication from the self-test for the isolated component.

An exhaustive list of all the states and the state numbering scheme follows:
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state s.c.n.! state description
1 3/0 3 available, none failed, VSST in operation.
2 2/0/W/0 2 available, none of the three failed, no unfailed indication

from self-test.

3 2/0/W/1 2 available, none of the three failed, 1 unfailed indication
from self-test.

4 3/F 3 available, 1 failed, VSST operation (i.e. detection delayed.

5 2/F/C/0 2 available, 1 of the three failed and correctly isolated, no
unfailed indication from self-test.

6 2/F/C/1 2 available, 1 of the th:ree failed and correctly isolated, 1
unfailed indication from self-test.

7 2/F/W/0 2 available, 1 of-the three failed but incorrectly isolated, no
unfailed indication from self-test.

8 2/F/W/1 2 available, 1 of the three failed but incorrectly isolated, 1
unfailed indication from self-test.

9 SL system loss.

As can be seen above, it requires 9 states to describe the operational states of this

fault-tolerant system. From now on, this system model will be referred to as the

g-state model.

The transitions out of each of the nine states correspond to the occurrence of

one of the random events such as component failures and RM decisions. The state

transition event trees for all 9 states are given in Figure 3-1. For clarity of how the

system can transit from one state to another state, a state transition diagram is

lstate characteristic notation
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Figure 3-1: State transition event trees
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Transition due to occurrence of
false alarm by VSST.

failure of one of the 3 instruments.

failed indication from self-test.
unfailed indication.

failure of isolated instrument.

failure of one of the two available
instruments.

2nd. consecutive unfailed indication from
self-test, instrument brought back on line.

failed indication from self-test.
failure of isolated instrument.

failure of one of the two available
instruments.

correct isolation by VSST.
wrong isolation by VSST.

2nd. failure of instrument.
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failed indication from self-test.

unfailed indication after previous failed
indication from self-test.

2nd. failure of instrument.

2nd. consecutive unfailed indication from
self-test, instrument brought on line.

failed indication from self-test.

2nd. failure of instrument.

failed indication from self-test.
unfailed indication from self-test.

2nd. failure of instrument.

2nd. consecutive unfailed indication from
self-test, instrument brought on line.

failed indication from self-test!

2nd. failure of instrument.

trapping state.

Figure 3-1, continued
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Figure 3-2: Transition diagram of the 9-state model
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shown in Figure 3-2.

3.4 Transition Kernel Matrix for the 9-State Model

}

In order to formulate the transition kernels for the 9-state model in closed

form, the following conditional decision time density functions associated with the

two sequential tests employed by the system and the time to failure density

function of each instrument are assumed to be known:

density function of time to isolation by VSST under condition that no
failure is present, with parameter Ao

density function of time to isolation by VSST under condition that one
failure is present, with parameter A

density function of time to failed indication by self-test SPRT under
condition that no failure is present in the isolated instrument, with
parameter Ay,

density function of time to unfailed indication by self-test SPRT under
condition that no failure is present in the isolated instrument, with
parameter Ay,.

density function of time to failed indication by self-test SPRT under
condition that a failure is present in the isolated instrument, with
parameter A\p,.

density function of time to unfailed indication by self-test SPRT under
condition that a failure is present in the isolated instrument, with
parameter Ap,.

density function of time to failure of each instrument, with parameter
€.

These decision time density functions for the tests will be assumed to be 2nd order

Erlang functions (see Appendix B for the properties of the density function) and

o
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they are relatively realistic because the sequential tests are unlikely to reach their
decision either a very short time or a very long time after they are initiated.
Rather, they are more likely to reach a decision around a region of time that is
some distance after the test is initiated. To illustrate this point, a Monte Carlo
simulation? for the correct decision Probability Mass Function (PMF) of a VSST
was obtained and is plotted in Figure 3-3. It shows that most of the decisions are

reached at around 18 seconds after the test is initiated.

After the conditional decision time density functions for the tests are known,
the transition kernel can be constructed by considering what the kernel elements

actually represent:

Pj'- () dr= Pji h .. (7)dr

7

=Pr{i—jin[r,7+dr)|enteriat0}

By expanding the meaning of ¢ — j and the definition of conditional probability,

Pji(r)dr can be rewritten in two different forms as follows:

Pj'.(r)dr=Pr{i—»jin [rnr+dr)andnoi—katanyt<r
for k=12,.... .N|enteriat0} (3.1a)

=Pr{i—-jin[r,r+dr)|noi—katanyt<r
for k=1,2,......N and enter i at 0 }
Pr{noi—katanyt<r
for k=1.....N | enter i at 0 } (3.1b)

Following (10}, the form in Eq. (3-1a) will be called the direct form because it is
simply a restatement of the definition of Pji(t). Eq. (3-1b) will be called the

conditional decomposition of Pji(t). For clarity, Eq. (3.1b) can be modified as,

Monte Carlo simulation source code is supplied by the author of reference [10]
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Pj.-(r)dr= Pr{i—jin|r,7+dr)andnoi — jatanyt < 7|

not ~katanyt<r

for k=1.2,....,j-1,j+1,....N and enter i at 0 }

Pr{noi—katanyt<r

for k=1,2,....j-1,j7+1,...,.N | enter i at 0 } (3.1¢)
The conditional decomposition of Pji(t) for each j and i provides a complete
definition of the behavior of the semi-Markov process. Construction of the
transition kernel by use of the conditional decomposition is particularly useful for

fault-tolerant system models because the eventual transition probability for each

state transition is generally not known.

The construction of two representative transition kernel elements of the 9-
state model is described below. First, the transition kernel element P, (t) for
transition from state 1 to state 2 is derived. State 1, which represents all the
instruments are working, with state characterization notation 3/0, can only transit
to state 2 with state characterization notation 2/0/0 and to state 4 with state
characterization notation 3/F. Hence, the transition from 1 to 2 represents the
occurrence of a false alarm by the VSST in the absence of a failure of any one of
the instruments. Using the definition of Eq. (3-1b), the transition kernel element is

derived as follows:
Py (ndr=PFPr{1—2in[r,r+dr)nol —»2atanyt <r|

nol—4atanyt < randenter 1 at0}
Pr{nol —w4atanyt<r|enterlat0} (3.2)

In terms of the conditional density functions of the test decision times defined at

eq. (3.2a):

Py dr = 1 ridr (1 = [ Fluau P (3.3

.......
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It
jz = xg re~20" (2nd order Erlang)
fF=ce~ (exponential)
then
Py\(n) dr= )\g re o dr[ e )3 !
or

Py (t) =3 te~Po+ 3 (3.4)

Another transition kernel element to be considered explicitly here is the one
representing transitions from state 2 to state 5. State 2 and State 5 have state
characterization notation 2/0/W/0 and 2/F/C/0, respectively. Other states that
staste 2 can transit to are states 2, 3 and 7 corresponding to state notation
2/0/W/0, 2/0/W /1 and 2/F /W /0, respectively. Hence the tramnsition from state 2
to state 5 represents the occurrence of a failure in the isolated instrument in the
absence of any failures among the two available instruments and of any decision
reached by the self-test. Then the transition kernel element can be derived as

follows:

Pyol)=Pr{2—5in[r,7+dr)and no2 -5 atanyt < 7|

no2—237atanyt < rand enter 2at 0} h
Pr{no2—237atanyt < r|enter2at0} (3.5)

with assumptions (a) and (d), Eq. (3-3a) can be rewritten in terms of the conditional

density functions of the test decision times:

.
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Pyolrtdr= Fidr 1= [ 1) 11 [ P an ] (1= [ i
0 0 0

(3.8)
By substituting expressions for the density fucntions:
Pyo(r)dr = ee™"dr ( Aypr+ 1) e wo’ ( ApT+ 1) c“*.Wl’ e~ %€
=e( AT+ 1) (M7 + 1 Je~(wp + Ay +3¢)7 g7
or
Pgylt) = € (Mgt + 1) (At + 1) e~ Cun + g +3¢)¢ (3.7)

Two of the twenty-six nonzero transition kernel elements were derived above.
The remaining elements are included in Appendix C. The fault-tolerant system
model is completely characterized by this transition kernel matrix, and state
probability histories can be derived from it by using Eq. (1.2). Any aspect of the
system performance statistics can be derived from it. The complete transition

kernel matrix is given in Eq. (3.8).

If € is set equal to zero in Eq. (3.8) , that is, if no failures can occur among the
instruments, then the transition kernel will be reduced to the form shown in Figure
3-4. This matrix can be partitioned into a block diagonal matrix consisting of 3
blocks. This‘ implies that no transitions occur between the states associated with
different blocks. Then the states within each of these three blocks form a closed
class. Therefore, when the original process is reduced to a non-perturbed semi-
Markov process, the resulting process consists of 3 classes. The first class
comprises states 1, 2 and 3, each of which has all three instruments working but

with different RM levels. Class two contains all the system states with exactly one
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P(t)= 0 0 0 X

X
X

Lo 0o o o o0 o0 o0

X: non-zero transition kernel elements

Figure 3-4: Structure of non-perturbed 9-state model transition kernel matrix

failed instrument, i.e. states 4, 5, 6, 7 and 8. State 9, the system loss state, is the

sole element of the third class.

3.5 Decomposition of Transition Kernels into the Standard Form

At this point, it is useful the express the transition kernel in the form which
comprises an eventual transition probability and a holding time density function as
in Eq. (2.1) The parameters of the transition kernel elements in such form will be
used for calculating the parameters of the approximate Markov process governing

the class-to-class transition. The two transition kernels in Eq. (3.4) and (3.7) will

be decomposed into the required form.

Eq. (3.4) can be rewritten as :

0
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\ 2
Pyt) = —0 (N +3¢)2te(ho+3e)t (3.9)
(Mg + 3¢ )2

Obviously, the second term of the RHS of the above equation is the conditional
holding time PDF of transitions from states 1 to 2. The first term will be expanded

in a power series in ¢ and high order terms of ¢ will be neglected, that is :

X2
__0__=l—£+0(€)
(7g + 3¢ )? o
~1-8 (3.10)
)

Substituting in eq.(3-5), it becomes
Py(t)={1-88} (N +3e)Pte(Ro* 3! (3.11)
0

The transition kernel element for transitions from state 2 fo state 5 in

Eq.(3.7) can be rewritten as:

Po(t) = € [ A\yph unt2 + (Mg + My ) £+ 1] e~ Pmo + 2wy + 3¢ )¢

2 Apn A
=¢ WOTWL 1 h o h, s + 36 )3 12 emOyp iy +3e)
3 3 "wo T Am
(XM+XWI+3¢)
A + M\
+e_wo Wl)2(xM+xm+3e)3te““wo“m+3‘)‘

+e 1 (Aun + Ay + 3¢ )3 e~ (Pup +2yy +3e¢)¢
g+ Ay +3¢) MW

(3.12)

It can be seen that P,,(t) comprises 3 terms, each of which is an "eventual
transiticn probability” times a "holding time density.” Thus, the form comprises
more than one term, but it will be demonstrated in Section 4.3 that those terms

can be combined together to yield the standard form for the evaluation of the

parameters of the approximate Markov process. A complete list of all the
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transition kernel elements in the standard form is included in Appendix C.

3.6 Closure

In this chapter, the structure of an example fault-tolerant system has been
described. After stating the assumptions and defining all the estates, a generalized
Markovian transition kernel matrix was constructed and it completely, characterizes
the state probability evolution. It was shown that the non-perturbed .system model
can be decomposed into three closed classes. Generally, any fault-tolerant system
model can be decomposed into such classes if each class contains the same number

of working instruments and failed instruments.
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Chapter 4

Evaluation and Comparison of 9-state
Model Exact and Approximate
State Probability Histories

Approximate Markov process theory was developed in Chapter 2 and a fault-
tolerant system model was constructed in Chapter 3. The 9-state model exact and
approximate solutions will be evaluated and compared in this chapter. In the first
section, the staie probability histories will be calculated by a semi-Markov
approach. From these results, the normalized state probability distribution that

exists within each class and the total probabilities for each of the three classes will

be evaluated. In the next section, the elements of the approximate technique will
be deduced. That is, the stationary probability distributions of the non-perturbed
process in each class and the parameters of the Markov process that approximates
the behavior between the classes will be calculated. The “state” probability
histories of the approximate aggregated Markov process will then be evaluated

analytically. Then, the approximate state probability histories will be constructed
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by combining these results with the stationary probability distributions within each

class. These exact and approximate results will be compared in Section 4.3.
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4.1 9-state Model Numerical Results from Semi-Markov Approach

Because it is relatively easier to calculate the state probability histories
numerically up to a certain number of time steps than analytically, the continuous
time system representation must first be discretized into a discrete representation.
The interval transition probability matrix will be calculated by using the matrix
convolution sum in Eq. (1.4) and then the state probability vector at each time
point is calculated by using Eq. (1.3). The initial state probability vector in Eq.

(1.3) is assumed to be,

H0)=[1 0 0 0 o0 0 0 o0 o olf (4.1)

because it is almost always the case that at the start of a mission all of the

instruments are working and all of the tests are initialized.

A FORTRAN source program was written to calculate these quantities. The
failure rate ¢, of each of the instruments is assumed to be 2.5x10°% sec’! which is
equivalent to a MTTF of 111.1 hours. The two sequential tests emplo&ed by the
system are assumed to have the decision time density function parameters listed

below:
Ag=0001 Xy =005  Ap=01
A{=005 Ay =01 XA =005
N.:te that the smallest of these values (0.001) corresponds to an approxi:aate mean

“itue between events of 0.278 hours, which is 3 orders of magnitude shorter than

« 111 1 hours MTTF of each component.

» ;r-gram used double precision variables exclusively, and was run on a

myuter system at the Massachusetts Institute of Technology. The
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time step size for the discretized model was chosen as 4 seconds as a compromise
between the desired mission length and the accuracy of the solution. State
probability histories up to 800 time steps were calculated. This is equivalent to a
mission time of 3200 seconds or just under one hour. The state probabilities at
various time points between 160 seconds and 3200 seconds are shown in Figure 4-1.
The evolution of the probability of occupying state 9, which is the system
unreliability, is illustrated in Figure 4-2. From the state probability histories, the
class probability histories can be calculated by summing the state probabilities for
the states within each class. This aggregated probability histories, which will later
be compared with the "state” probability histories of the approximate aggregated
Markov process results, is shown in Figure 4-3 for each class. The evolution of
these probabilities for the 1st class and the 2nd class is plotted in Figures 4-4 and

4-5, respectively.

The state probability distribution of the original process will be approximated
by expanding the ”state” probability distribution of the approximate Markov
process with the stationary probability distributions of the non-perturbed process
within each class, as in Eq. (1.5). Therefore, one way to measure how good the
approximation is, provided the approximate Markov process gives the exact class
probability distribution, is to observe how quickly and how accurately the exact
normalized probability distributions® in class 1 and 2 approach the stationary
probability distributions for these two classes. Therefore, the state probability
distributions calculated above were normalized and the results are shown in Figure

4-6.

3The normalized probability distribution in a class is calculated by dividing the probability
distribution elements by the total probability of occupying that class.
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b 1am0 Tam1
0.2%-0% 0.100-02 0.%0e-01
cas DrOGram run parameters cse

no. of time step * 800
time step/sec. - 4.00

fina) time s J200.00 sec.

normel ised proo. dist. in sach

40 . 992768+00 . J64948-02
80 .98339€+00 .T1691E-02
120 .97974€+00 . 968 18€-02
1860 -97336€+00 . 11403€-01
200 .97 189€+00 . 12770£-01
240 . 96908€ +00 . 13688¢-01
180 .96674€+00 . 14342€-01
J20 . 964TIK+00 . 1480€E-01
160 .962397€+00 . 15133¢-01
400 .96 138£+00 . 15383¢-01
440 . 99992€+00 . 19822€-01
480 . 95054€+00 . 18631E-0t
320 . 95724€+00 . 19704€-01
S60 . 99398¢+00 - 19781E-01
800 . 954 73E€+00 L 15779E-01
640 -95395E+00 . 18794£-01
680 .99237€+00 . 15800E-01
720 . 95120€+00 . 19798€-01
760 . 95004 E€+Q0 . 18792€-01
800 . 948898 +0C . 19782€-01

Figure 4-1: Exact’ state probability histories of the 9-state model.
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1 amwO
Q.50e-01

class

.23739€-02
.50838€-02
.89896€£-02
.837%2¢-02
.$3698¢8-02
. 10072€-01
. 10878E-01t
. 10933€-01¢
. 11198€-01
. 113€2€-01
. 11488E-01
. 11870€-01
. 11626¢-01
. 11663£-01
. 1168SE-O!
. 11697€-01¢
. 11702€-01
.11701€-01
L11897E-01
. 11690€-01t

1amw t

1amfO
0. 100+00 0. 10e+00

.39161€-03
.53487E-03
.87437€-03
.81376€-03
.99295€-03
. 10919€-02
. 12307€-02
. 13691€-02
. 15Q74E-02
. 164%54E£-02
.17831€-02
. 19206€-02
.20978€-02
.21948€-02
.23219E€-02
.24879E€-02
.26041€-02
.27400€-02

28787€-02

.30111€-02

Tam# 1
0.5%0e-01

.82376¢-03
. 14407€-02
.22999€-02
.J07728-02
.38920€-02
.47066¢E-02
.551988-02
.63292€-02
.7T1381E-02
. 79494€-02
.87910€-02
.995951£-02
. 103S8€-01
L 11199€-01
. 119S8€-01
. 12796€-0¢
. 13992€-01¢
. 1434TE-01
. 15140€-01
. 15932€-01¢

. 1368%€-03
.34827€-03
.568074€-03
.7727%€-03
.90427€-02
. 11993€-02
. 14089€-02
.16181€-02
. 18299€-02
.203%2€-02
.22441€-02
. 24%26E-02
. 26807€-02
.28604E-02
.30787€-02
.32828€-02
.34891€-02
. J€982€-02
.39008€-02
.41081€-02

-17260¢€-04
. 40320€-04
-S1988E-04
.83375E-04
- 746788-04
.85892€-04
-97038€-04
. 10813€-09
L 11917€-02
.13018€-03
- 14118€-03
. 15209€-03
. 16300€-03
-17389€-03
. 18473€-03
. 19859€-03

20641€-03

.21720€-03
.22790E-03
.23873¢-09

(* to within numerical round-off error)

L ]
. 186968 -04 .432712-08
.29279§-04 . 17276€-0%
.30081€-04 .38796¢8-08
.46687E-04 .68887E-08
.95131E-04 .10747€-04
. 835038 -04 - 19499€-04
. 71808K -04 .21010E-04
. 800%4E-04 .27428E-04
.88299€-04 .34679€-04
.96428E-04 .42776E-04
. 10457€-03 .S1716€E-04
.11208€-03 .61496E-04
.12077€-03 .T2118€-04
. 12084E-03 .83572¢-04
.13689¢-03 .9%5064¢€-04
. 14492€-03 -10099€-03
.15293€-03 . 12298€-03
. 16093€-03 .13774€-03
. 18891E-03 . 15336€-03
.17688E-03 . 18981€-03
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in each class ¢»+¢

.119837337e-02
.239328567e-02
.358500929e-02
.477379211e-02
.595983465e-02
.714326918e-02
.832419441e-92
.950268212e-02
.1067878480-01

. 130239792e-01
141931211e-01
. 153599829¢-01
. 16524%5772e-01
176869142e-01
.1884700180-01
.200048469e-01
.211604551e-01
.223138315e-01
.234649808e-01

AT AR NG

427759824e-04

.517155682e-04
.614958117e-04
.721150697e-04
.835717095e-04
.95864 1062e-04
. 10899064 1e-03
. 122949701e-03
.137739678e-03
. 153358966e-03
. 169805965e-03

Figure 4-3: Exact class probabilities history of 9-state model.
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Figure 4-5: Exact class 2 probability history.
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.022748
.016851
.014492
.013276
.012530
.012024
.011657
.011379
.011160
.010983
.010837
.010716
.010612
.Q10823
.Q10446
.Q10378
.010318
.010265
.010217

.015768
.012232
.010622
.009776
. 009250
.008890
.008626
.008424
.008265
.008136
.008029
.007939
.007863
.007797
.007740
.007689
.007645
.007605
. 007570
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ss+r mode! parameters *s*»
op 1amO tam1 1amwOQ lamw tamfQ tamf 1
0.2%-05 0.10e-02 0.50e-01 0.50e-01 O0.10e+00 0.10e+00 0.50e-0t

ss* program run parameters *e*e

no. of time step = 800

time step/sec. - 4.00

final time = 3200.00 sec.

normalised prob. dist. in each class

time state

step 1 2 3 4 S 6
40 0.993949 0.003674 0.002377 0.3286783 0.520%07 0.114195
80 0.987752 0.007182 0.005066 0.223402 0.60199% 0.145520
120 0.983268 0.009717 0.00701S 0. 188107 0.630367 0.156411
160 0.980047 0.011538 0.008415 O0.170464 0.644613 0.161873
200 0.977732 0.012847 0.009422 0.1%59895 0.6%3175 0.165150
240 0.976068 0.013787 0.010145 0.1%2859 0.658891 0.167336
280 0.974873 0.014463 0.010664 0.147840 0.662979 0. 168897
320 0.9740t4 0.014948 0.011038 0.144080 0.666049 0.170068
360 0.973397 0.015297 O0.011306 0.141158 (0.668438 0.170979
400 0.972954 0.015548 0.011499 0.138822 0.670351 O0.17170%
440 0.972635 0.015728 0.011637 0.136912 0.671918 0.17230%
480 0.972406 0.015857 0.011737 0.135320 0.673223 0.172802
520 0.972241 0.015950 0.011808 0.133974 0.674329 0.173223,
560 0.972123 0.016017 0.011860 0.132820 0.675277 0.173%83
600 0.972038 0.016065 0.011897 0.131821t 0.676098 0.173896
640 0.971977 0.016099 O0.011923 0.130946 0.676817 0.174168
680 0.971933 0.016124 0.011942 0.130174 0.677452 0.17441
720 0.971902 0.016142 0.011956 0.129488 0.678016 0.174625
760 0.971879 0.016185 O0.011966 0.128875 0.678521 0.174817
800 0.971863 0.016164 0.011973 0.128322 0.678976 0.174990

Figure 4-8: Exact normalized probability distribution histories for
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classes 1 and 2 of the 9-state model.
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4.2 Approximate State Probability Histories for the 9-State Model

4.2.1 Imbedded Markov Chains

It was shown in the last chapter that, when e=0, the 9-state model
decomposes into a non-perturbed model consisting of 3 closed semi-Markov chains.
The eventual transition probabilities of these non-perturbed semi-Markov processes
completely define the imbedded Markov chains. With the numerical values of the
parameters of the model listed in Section 4.1, the transition probability matrix of

the imbedded Markov chain is found and shown in Eq. (4.2).

0 o0 07407 0 0 0 0 0 0] -

1 0.2593 0.2593 O 0 0 0 0 0 ,'

0 074074 O 0 0 0 0 0 0 .

3

0 0 0 0 0 02593 0 07407 O X

!

P= 0 o0 0 09 07407 0.7407 0 0 o (4.2) 5
6 0 0 0 0203 0 0 0 0

0 0 0 0.1 0 0 0.2593 0.2593 O ;

\

0O 0 0 0 0 0 07407 0 0

o o o o o o 0o 0 1 | ;

The transition probability matrix is raised to successively higher powers to -‘
characterize the behavior of the imbedded process after many transitions. It was \
found that when the power exceeds 40, a stationary interval transition probability )
matrix establishes itself as in Eq. (4.3). ,

By a result in Markov process theory (3], it can be concluded that the 3

RIEAENL e i ¥ > "y} LY > N y \ . T W 1 g A CA LY % %)
‘l\-‘,.x' Sy ‘n“f‘."‘ﬂ"q‘hn‘, ".‘-‘E‘N'-qul.‘; SOV UL MR o X O X W 0 R, qﬁi‘. U 00 XS “\‘...l } OO N .1‘ X) 'J .!.‘J XN P o0 Pa Mg \ A -‘l‘,‘



[0.2307 0.2397 02397 0 0 0 0 0 0 ]
0.4368 0.4368 0.4368 0 0 0 0 0 0
03235 0.3235 03235 O 0 0 0 0 0
0 0 0  0.0550 0.0550 0.0550 0.0550 0.0550 O
P"= | o© 0 0 07366 0.7366 0.7366 0.7366 0.7366 0
0 0 0 01910 0.1910 0.1910 0.1910 0.1910 0
0 0 0  0.0100 0.0100 0.0100 0.0100 00100 0
0 0 0 00074 0.0074 0.0074 0.0074 00074 0

| o 0 0 0 0 0 0 0 1

(4.3)

decoupled imbedded Markov chains for each class are ergodic with the stationary

probability vectors in each class being,

) =1{02397 o0.4386 0.3235|7 (4.4)

I‘;} ={0.0550 0.7366 0.1810 0.0100 0.0074 |7 (4.5)
3

) =[1] (46)

As a result, the second condition stated in Chapter 2 is satisfied by the 9-state

model and the approximate Markov process will be valid.

4.2.2 Stationary Probability Distr.bution of the Non-Perturbed Process

The stationary probability distribution of the non-perturbed process is needed
to expand the approximate Markov process results in order to approximate the
state probability distribution of the original process. By semi-Markov theory, this

stationary probability distribution for each non-perturbed class is given by

............

-
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where ? is the mean waiting time of the process:

= Z WM- T'- (4.8)

and where 7, is the stationary probability for state i of the imbedded Markov
1
process that is characterized by the eventual transition probability matrix of the

semi-Markov process. ?, is the mean holding time in state i and it is given by,

= Pii T (4.9)
all j

where Pjir with the same notation before, is the eventual transition probability from
state i to state j and T is the mean holding time for transitions from state i to

state j which is defined by,

(o o]
Pi= /0 Eht) dt (4.10)

The calculation of the stationary probability distribution of the non-
perturbed semi-Markov chain in class 1 is demonstrated here and that of class 2 is

included in Appendix D.

For the non-perturbed process in class 1, state 1 can transit only to state 2,
state 2 only to 2 and 3, and state 3 only to 1 and 2. The mean holding time for

transitions from state i to state j is derived as follows:

Since p,,(t) is not in the simplest form, 7,9 will be derived here. From the

transition kernel matrix,

Poalt) = Pag oo (8) + Py hos (1)
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where
2
2= 3
Ouo + 2mr)
2
— wo
Pry=——"—3
'. Ao + 2w

— 1 3,2 —Duntrus it
hyp () =1 0wg + dun)* ¢ Cuotruwr)

has,(8) = Dy + Myp) t e~ o)

This can be rewritten in standard form as :

Pao ~~o
= P,y {_1 h22 (t) + hz,, 0} (4.11)
P22 Pag
where
Pa2 = Ppa, + P2,

Note that any kernel element given by a sum of terms can be treated similarly. So

by definition, the mean holding time ?,, is given by :

P22,
—f 2, 0+ 2y 0 )4

Pog
Pa2, 2
= + —= = (4.12)
1’22 ("wo + ‘wa)  Pag Gup + i)
By a similar approach,
—_ 2
fa=5=
P32 P32
Pyo = 1 3 + 02 2

P32 Cywo+ wa) P32 o+ M)

N 8 ™ 7N T T A 275 T 5T AT T AT A AT K T A N TN T e

£ * - L - »! Rl bl oft . Ll A




-64-

where

From Eq. (4.9) with the numerical values of the parameters and statistics of

the 9-state model kernels substituted, the mean waiting times of the states in class

1 are,

?L = Pgy Ty = 2000 seconds
P9 = Pgg T9g + P T30 = 16.206 seconds

73 ="p3 }13 + Py3 Fp3 = 16.296 seconds
With m,, given in Eq. (4.4), ? is given by :

P = E ”Mi = 491.790 seconds

Then the stationary probability distribution in class 1 is,

™, "1
r o=_—1_=09748
?
™, T2
T, = 3 = 0.0145
n r
T, = My 3:0.0107
r

or,

AL
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#V=[09748 00145 0.0107}7 (4.13)

The stationary probability distribution in class 2 is evaluated in Appendix D and

the result is as follows :

x(? ={01250 006820 0.1768 0.0083 0.0069 |T (4.14)

Class 3 consists of only one state, so the stationary probability distribution is,

8 = 1T (4.15)

4.2.3 Approximate Markov process

The Laplace transforms of the kernel elements of the approxi‘mate Markov
process were derived in Chapter 2 and they involve the time scaling fz;ctor 6. But d
is only the scaling factor relating the temporal scales of the two processes. It can
be set to any value and the resulting ¢, (s) will be different for different values of
8. The enlarged process hence deduced will be related to the original process by the

time scale factor § set in the derivation of ¢ ,(s).

The parameters 6, ¢, p,, and 4, in Eq. (2.19) for kernel element
completely define the enlarged process and p, and .4, can be derived - -
parameters of the original semi-Markov process. as shown in b, 220
with the result that the enlarged process approximates the ¢
semi-Markov process in a new time scale and anv res
enlarged process must be scaled tc thz oniginal i - o
representation of the original process 1s not fee e

and it will not be derived here. What il w.

the enlarged process of the 9--tate i
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2.5x10"8 sec’], the same value as the failure rate ¢ of each instrument. Then Eq.

(2.19) is reduced to,

A
¢ (0)=p, XI-‘—:-; (4.16)

which is exactly the result given in [4].

The procedure for calculating 4, is as follows (numerical results are quoted

from Appendix C) :

1 1 1
-5 -
JEE,
= 8000 (4.17)

(1) _ (r _ (1) (1)
G = 9p =5 + 939
JE El
= 13.333 + 35.555
= 48.888 (4.18)

1 1 1), (1
i) = 30 0 =di3 + )

JEE,
= 35.555 + 13.333
= 48.888 (4.19)

1 1 1
“(1)= Z “11”51)'-'“21"!21)

jEE,
= 2000 (4.20)

)= 3 anry =amry

j€Ey
= 16.208 (4.21)

(1)
+ a3, P,




o
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T ool =gy pll) 4yl

j€By
= 16.206 (4.22)

Substituting Eq. (4.17) to (4.22) into Eq. (2.22), then

3000w, +16290g(p)M 10307
=3 (4.23)

4,=

The procedure for obtaining p,, is as follows :

21 1 1
= E -
J€ E2
= 6000 (4.24)

_ 1 1), (1
=Y d)=d7+d)

j€E,
= 48.888 (4.25)

q(22l)

..1)__ Z q - (l)+ (l)

J€Eq
= 48.888 (4.26)

Substituting Eq. (4.20) to (4.22) and Eq. (4.24) to (4.26) into Eq. (2.21), then

Pn = m»M +1om:M +mme

=1 (4.27)

P,; ¢qual to 1 implies that p,, equals O due to the fact that the sum of the eventual

transition probabilities exiting a state must be 1.




m
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The procedure for obtaining 4, is as follows :

P T @ d
o

1(52)_ Z qg)_ (s‘t;).,_'(;)

JEE,
== 32.503
1(2) - z qg) - 7(426, + q(szol
JEE,
= 32.503

D T Dl

JEE,
= 32.503

2 o 9
o =Y 0 =dly+dly
J€Ey
= 32.503

Dm 5 erDm s el

J€E,
= 40
2 2
= T earll = oarl el
JEE,
= 16.206

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)
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(2)_ Y ap p -a pm-i-a pg)
j€E,
= 16.206 (4.35)

m 5 ey s
Jj€E,
= 16.200 (4.36)

) Z oa p ’-a Pm"’“n’ﬁ’
JEE,
= 16.208 (4.37)

substituting Eq. (4.28) to {(4.37) into Eq. (4.22), then

807y, +32.503 7, +32503 7, +325037, +32503ry,
h=4w0r, +1820215, +162025), + 16021, +16202x,,
-2 (4.38)

q The procedure for obtaining py,

DRI BT

J€Ey
= 80 (4.39)
32) (2)
'(s Z 95 = "95
j€Eq
= 32.503 (4.40)

32) (2) o (2
':s - Z 98 ™ %e
Jj€ 5‘3
= 32.503 (4.41)

L——wmwmmamunwm;mm
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- T -
j€B,
= 32.503 (4.42)
- T -4
j€Ey
= 32.503 (4.43)

substituting Eq. (4.28) to (4.32) and Eq. (4.39) to (4.43) into Eq. (2.21), then

80x,, +32503~7,, 4325037, +32503x,, +32.503~
M, M, M, M, Mg
P32™80rx,, +32503x,, +32.503x,, +32503r,, +32.503~r
- ] (4.44)

P3q ¢qual to 1 implies that p,, equals zero.

Since class 3 is a trapping class, it will not affect the result if it is assumed
that the numerical values of Ay and pyy are both 1. By summing all the results

obtained above, the Laplace transform of the transition kernel matrix of the

approximate aggregated Markov process is as follows :

- 0 0 -
3
Pu)=| 73 0 0 (4.45)
2 1
. 0 s+ 2 s+l |

[ 0 0 0
P(t)m| 33 0 0 (4.46) ;
0 2¢~%' et X
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By semi-Markov theory, the Laplace transform of the interval transition matrix can
be expressed as follows :

@ (o)== [ol+(I-PAJ? (4.47)

where s is the Laplace operator, I is the identity matrix, P is the eventual
transition probability matrix and A is a diagonal matrix whose i-th element is the
exponential transition rate out of “state” i. So, for the approximate Markov

process for the 9-state model, P and A are as follows :

-

0 0 0

P = 1 0 0 (4.48)
| 0 1 1
[ 3 0 0

A=| 0 2 0 (4.49)
| o 0 1

Substituting Eq. (4.48) and (4.49) into Eq. (4.47) yields, after some

manipulations,
r .
+4+3 0 0
3 1
)= 2N +9) (" +2) 0 (4.50)
) 2 1
L e+ 20e +3) o(s +2) s [

or in the scaled time domain,

(ot o, 0NN AOAMAS A 4 oA A




I e‘“ 0 0

(1) = k| P c’”) e 0 (4.51)

| 1-ae a2 o0y

Since the initial state probability vector used in the exact state probability
distribution histories calculation was assumed to be
%(0)=[1 0 0 0 0 0 0 O O 0]T, the state probability vector for the
approximate aggregated Markov process will be,

f0)=(1 0 o|T (4.52)

By Eq. (1.1), the "state” probabilities of the approximate aggregated Markov

process are,
x5(¥) = e (4.53)
x(¢) = 3(e~ % - =3 | (4.54)
x(¢) m 1 = 3¢ H 4 2 (4.55)

The argument t'is used here in order to distinguish the different time scale used for
the approximate Markov process. The original semi-Markov 9-state model is
defined in a faster time scale, denoted t. If the rf. (#') are expressed in this original

temporal scale, then Eq. (4.53) to (4.55) will, in general, become :

x{(t) = 3% (4.58)
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t;(t) m ] -3¢0 4 93 (4.58)

or, in this example where §==¢, these three equations become,

x3(t) == =3¢ (4.59)
x3(t) = 3(e™ 2 — ¢ 73¢) (4.80)
x3() = 1 — 3724 4 2¢73¢ (4.81)

By expanding the approximate Markov process with the stationary
probability distributions of the non-perturbed decoupled processes obtained in Eq.
(4.13) to Eq. (4.15), the approximate probability distribution for the §-state model
is,

[ 0.9748
0.0145 | e3¢
0.0107 |
0.1250

° (f) = 0.6820 (4.62)
0.1768 | 3( ™% — 3¢

0.0003

| 0.0060 |

[ 1 ] (1-3e7%¢ 4 2.73¢)
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4.3 Comparison and Discussion of Results

The accuracy of the approximate approach depends on two key factors. The
first factor is how quickly and how accurately the normalized probability
distribution in each class of the 9-state model converges to the non-perturbed
stationary probability distribution. The second factor is how accurate the "state”
probabilities of the approximate aggregated Markov process are relative to the class
probabilities of the 9-state model. The comparison of results for the example

system in these two aspects follows:

First, the normalized probability distributions at the end of the mission, i.e.
at t = 3200 sec., obtained in Figure 4-1 and the analytical non-perturbed
stationary probability distributions obtained in Section 4.2.2 are compared in
Figure 4-7. The largest and the smallest relative percentage errors occur in state 3
and 5, respectively. The normalized probability trajectories for states 3 and 5 are
plotted in Figures 4-8 and 4-9 along with the corresponding analytical stationary

probability distribution value (a constant in each case).

In Figure 4-8 the state probability trajectory in state 3 starts to converge to
within 12% of the stationary value from t = 800 sec. onward and at the end of
the mission it converges to a value of 0.012, which is higher than the stationary

probability. In Figure 4-9, the state 5 normalized probability trajectory converges

faster to within 10% of the stationary probability from t = 350 sec. onward and
converges to within 0.5% or to a value of 0.88 at the end of the mission. The main
contribution to the large percentage error of the normalized probabilities in states 2 J
and 3 relative to the analytical stationary probabilities is due to the large step size |
chosen for the discretization of the 9-state model (step size was chosen for

compromise between accuracy and mission length). To illustrate this point, the

_ o - " (i
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normalized | stationary stationary
class state | probability | probability | probability relative %
distribution | distribution | distribution error
(numerical ) (analytical )
1 0.9718 0.9719 0.9748 -3.0
1 2 0.0161 0.0162 0.0145 11.7
3 0.0119 0.0120 0.0107 11.7
4 0.1283 0.1179 0.1250 2.7
5 0.8789 0.6876 0.6820 -0.5
2 6 0.1749 0.1783 0.1768 -1.0
7 0.0101 0.0094 0.0093 9.6
8 0.0075 0.0069 0.0069 9.7

Figure 4-7: Comparison of normalized probability distribution at t=3200 sec.
and stationary probability distribution of the non-perturbed process

stationary state probability distribution within each class was obtained numerically
by running the 9-state model program for 800 time steps with e=0 and
m0)=[100100001). The result is the numerical stationary probability
distribution of the non-perturbed process which is shown in Figure 4-7. The class 1
normalized probability distribution converges to the numerical stationary
probability distribution rather than the analytical stationary probability
distribution. From this, it can be concluded that the base-line results for the

normalized probability distribution are in error due to computational effects in the

. Ry - «aq® W . N A R T
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discretization of the governing matrix of the model.

The class probability trajectories from the semi-Markov approach were
obtained in Section 4.1 and the "state” probabilities of the approximate aggregatc-1
Markov process in closed form were deduced in Section 4.2.3. The results of these

two different approaches at 40, 80, and 800 time steps are compared in Figure 4-10.

L) 4
RO

t/sec. class humerical semi-Markov | approximate Markov ‘
approach process technique _
1 0.9988 0.9988 I
160 2 0.1198e-2 0.1199e-2
3 0.4327¢-6 0.4804e-8
i
1 0.9976 0.9976 :
320 2 0.2393e-2 0.2305¢-2 .
3 0.1728e-5 0.1918e-2 ‘
1 0.9764 0.9763
3200 2 0.2346e-1 0.2352e-1
3 0.1698e-3 0.1895e-3

Figure 4-10: Comparison of class probability obtained from numerical semi-

Markov approach and from approximate Markov process technique

R ORI I WELIAL M WA

Figure 4-10 indicates that the largest absolute error between the two results is only
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0.0001 in class 1 at the end of the mission. This shows that the enlarged process
approximates the aggregated probability distribution of the exact model very well.
With the inaccurate base-line results taken into account, the absolute error of the
approximate state probability distribution, obtained by expanding the approximate

Markov process with the analytical stationary probability distribution as in Eq.

(4.62), will be less than 0.0000117 for any state beyond t = 800 sec. This is only
1/2000 of the MTTF of each instrument.

The high accuracy of the enlarged process approximation led to a closer
examination of the example system. Undoubtedly, the model for this system is a
"pure” semi-Markov model because none of the transition kernel elements has an
exponentially distributed holding time. If the states in each class are examined
carefully, it can be found that all the states within each class represent the same
number of working and failed instruments. By combinatorial analysis, the time to
transition from class I to class 2 is exponentially distributed with a parameter of
3e. So the 9-state model class to class transition is intrinsically governed by a
Markov process. Although the 9-state model has this property, it is not non-trivial
to deduce whether the approximate technique did accurately approximate the state

probability distribution of a genuine semi-Markov process.

Because of this special property of the 9-state model, the approximate

technique will be further tested on several semi-Markov models in the next chapter.
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Chapter 5

Further Tests of Approximate Technique
with 4-State Models

The approximate technique applied to the 9-state model was demonstrated in

the previous chapter. In order to further test the technique for other models that a
fault-tolerant system might produce without expending a lot of effort to create
large state space models, several relatively small 4-state semi-Markov process
models will be created in this chapter to simulate various fault-to‘lerant system
class to class transition structures and properties, and to evaluate the results of the

approximation technique.

There are five models to be examined in this chapter. Their detailed
descriptions appear below, but they will be summarized here. In case I, there are
two ergodic classes where the second class is a trapping class. Case II has the
property that ergodic class 1 can transit to trapping classes 3 or 4. The difference
between this case and Case III is that in Case I, class 2 can transit back to class 1.
The next example, Case IV, consists of two non-ergodic classes where class 2 is a
trapping class. Case V, the last model, comprises four classes, where classes 3 and

4 can be entered from both class 1 and class 2.

/'f/
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5.1 Case I

In this model, the semi-Markov process consists of four states, The state

transition diagram is shown in Figure 5-1.

O -
/

class 2

Figure 5-1: State transition diagram for Case |

The process can be decomposed into two classes, namely class 1 and class 2, when
€¢=0. Class 1 comprises states 1 and 2 and class 2 comprises states 3 and 4. The
transition from class 1 to class 2 is through the small eventual transition
probability in terms of ¢ from states 1 and 2 to states 3 and 4. However state 3
and state 4 cannot transit back to any of the states in class 1, hen«ie class 2 is a

trapping class. The governing transition kernel matrix is given by the following:

A A AN AN O DO AGAC IO
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[ ) (0.3 - TN e~ 0 0 ]
(1-6ege™27 (0.7 - 26~ 2 0 0
P(t)= (5.1)
2exlte~M! saajte™™  oanfte™  0.5aTte ™!
2, =)\ 2, =)\ 2, - 2, -
[ dergte™ 3eagte™2  08Ate™M 0.5A3te Y |
where ) m0.2, A me0.1, em2.5x10°%, ( all units are in sec’! ).
It is assumed the initial coadition is,
*x©0=(1 0 0o o) (5.2)

Oue poiat about this model to be emphasized is that the holding time density
functions for the transitions from states in class | to states in class 2 and those
withia class 2 are 2nd order Erlang PDFs. These are non-exponential holding time

density functions, so the model is a semi-Markov process. \

Stationary probability distribution of the mom-perturbed semi-Markov
process

By setting ¢=0 and dropping sll the holding time density functions in the
transition kernel matrix, the transition probability matrix of the non-perturbed

Markov process is found to be :

r 4

0 03 0 0
1 0.7 0 0 (5.3)
Pw=
0 0 0.4 0.5
| o 0 08 05

By raising the single step transition probability matrix successively to higher
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0.2308 0.2308 0 0
0.7003 0.7602 0 0
T
) 0 0.4545 0.4545
| o 0 0.5455 0.5455

processes in class | and 2 are:

!(A“) = [0.2308 0.7602 )T

5‘:} = [0.4545 0.5455)7
The mean waiting times for the states in class 1 are,
P mpy L= 10
2
- 1
P, =p, %""’227’8-5
1 2
Therefore the mean waiting time of the process in class 1 is
r= 3y Ty, 7= 8.8462

i€ El
Hence, the stationary probabilities in class 1 are

f‘l" = ___’l_‘ = 0.2609

n 4
) - .ﬁ:_l = 0.7391

D
-

-

o

powers, the stationary interval traasition probability matrix is found to be :

(5.4)

Then the stationary probability vectors of the non-perturbed imbedded Markov

(5.5a)

(5.56)

(5.6)

(5.7)

(5.8)

{5.9a)

{5.96)




or in vector form,

' = 02000 0.7301 )T (5.10)

The mean waiting times for the states in class 2 are:

93-’”{;-0-’“;3-18 (5.11)
r‘-,uz?;a-p“;?;-ns (5.12)

Therefore the meaning waiting time of the process in class 2 is,

4 ?. == 15.4545 5.13
i€E,
Hence, the stationary probabilities in class 2 are,

| & ?3

,‘:’ - .ig_. = 0.4705 (5.14a)
4 4

A}’-.ﬁ:.__‘-o.sm (5.14b)

or in vector form,

%) = [0.4705 0.5205|T (5.15)

Approximate Markov process
In all the five cases in this chapter, the time scale factor & is set equal to ¢
and a similar approach as in the 9-state model example in the last chapter is used

for evaluating the approximate Markov process.

The Laplace transform of the kernel element for transition from aggregated

"state” 1 to aggregated "state” 2 is given by:




L)) (')"zx—‘"-

o+A‘

where

L 40
A = = g JAI‘; 'i_l)

From the transitioa kernel matrix in eq.(5.1),

das

,!;’-.74-2-0

Substituting all the numerical quantities in eq.(5.15):

Al am _0.2308x6+07002x9 .. 00301
0.2308 x 10 + 0.7002x 8.5

Obviously from the structure of the class to class transitions,

’nl'l

Therefore,
9, (8) = 0991

s + 0.9301

or in the scaled time domain,

¢21 “l) = 0.9391 e-0.9391 Iy

oo

(5.18)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.23)

Since there are only two classes and class 2 cannot transit to class 1. the

approximate probability in class 2 is given by,




t;(l')-/:‘m (r) dr

-] - g0 (5.24)

and the approximate probability in class 1 is,

:;(r) -] - r; ()

In the original time scale, this becomes

(1) mm ¢ =091 x 25 1078 (5.28)

xf (1) =1 — DS0L 225 1079, (5.27)
Exact soclution of the original semi-Markov process

The exact solution of the semi-Markov process is to be evaluated analytically
by using eq.(4.40). Although there are only four states in the model, the
manipulation will have to be helped by using a powerful symbolic manipulation
program called MACSYMA which resides in the Multics system at the
Massachusetts Institute of Technology. Two of the elements of the interval

transition probability matrix are obtained as follows:

é,, (f) = 0.030115 | e=235e-61 _ ,—0.22000815¢
+0.230749 [ e~235e-61 _ ,—022090815 ¢

+ 5.384780e~7 t e~ 01! 4 0.538474 701!
+ 2.833533¢—5¢702¢ (5.28)
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#,, (¢) = 0.939775 | (23860t _ 022999815 ¢ )
+0.538533 [ (=235 =0 ¢ _ 0.22000815 ¢

—( 5.760362e—7¢ + 0.538483 Je~0-1¢ — 5 000e—5 02 ¢ (5.29)

Since the initial condition was assumed in Eq. (5.2) tobe x(0)={1 0 0 0 ]T,
then

() =9,,( (5.30)

7, (8) = &y, (¢) . (5.31)
Therefore the total probability in class 1 is,

PEl(t) =7, (8} + 7,y (8) (5.32)

, Comparison of resuits
The approximate and exact total probabilities in class 1 at different time
points are compared in Figure 5-2. The results indicate that errors in the
aproximation occur only at the fifth decimal places through the time history up to
t=10000 with the maximum relative percentage error occuring at t=1000 at value
of only 0.0002%. This shows that the class probability is well approximated by the

enlarged process.

After the class probability results have been compared, the normalized
probability distribution within class 1 is compared with the stationary probability
distribution that is given in Eq. {5.9). The normalized probability distribution

history in class 1 is shown in Figure 5-3.

By comparing the stationary normalized probability distribution that was
established after 100 seconds with the stationary probability distribution of the

non-perturbed semi-Markov process in class 1 obtained in Eq. (5.9), it is found that

A NGOG D N
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t/sec. approximate class exact class
probability w: (¢) probability PEl(t B

1 0.99999 1.00000
5 0.99999 1.00000
10 0.99998 0.99999
50 0.99988 0.99990
100 0.99977 0.99978
500 0.99883 0.99884
1000 0.99765 0.99767
5000 0.98833 0.98834
10000 0.97680 0.97679

Figure 5-2: Comparison of approximate and exact probability in class 1

there is no error up to 4 decimal places. This implies that the semi-Markov process
is well approximated to within 0.0002% error after the transient period of 100
seconds at the beginning of the mission. The transient period is about 10 times the
maximum mean waiting time among the states of the non-perturbed process in

class 1 and 0.025% of the MTTF.

lllll
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t/sec. state 1 state 2
1 0.9075 0.0925

5 0.6510 0.3490
10 0.4791 0.5209
40 0.2707 0.7293
100 0.2609 0.7391
200 0.2609 0.7381
600 0.2609 0.7391

Figure 5-3: Normalized probability distribution in class 1

5.2 Case 11

In Case I, the semi-Markov process was well-approximated by the enlarged
process after the transient period. However, the model there is not general enough
to include different classes that class 1 can transit to, as is likely to be the case for
many fault-tolerant system models. Ironically, in the 9-state model there is not a
class that can transit to both of the other two classes. In order to investigate how
valid the approximation is, another model will be formed. It consists of four states
which decompose into three classes. Class 1 comprises states 1 and 2; classes 2 and
3 are just states 3 and 4, respectively. Class 1 can transit to classes 2 and 3 while
classes 3 and 4 are trapping classes. The state transition diagram is shown in
Figure 5-4 and the process’ governing transition kernel matrix is defined as follows:

AR N ." N h" Voo ‘“ < ...‘. ,' . . N . . u.« ..—-\'- .:--‘f)'\ ? D. Ay \ ] \ Y o WY .1 24 ’f'lf -
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[ 0 (0.3 — Te)x e~M1! 0 0 ]
(1= 8ege™ 2 (0.7 =26, 0 0 '
P(t)= (5.33)
2ek3e“*3‘ Gekse')‘at Xse‘xs‘ 0
| deX 4e">‘4‘ el 4c")‘4‘ 0 A 4e")‘4‘ )

where 2=0.2, X2=0.1, Ag=0.4, \;=0.5, e=2.5x10‘°, ( all units are in sec’! ).

class 1
!
> ,,

|

PNe I class 2
|
|

class 3

e . -~

Figure 5-4: State transition diagram for Case II

In this model and those that follow, all the transition holding time density

P == :

functions are exponential. However, different exponential functions are used for
different destinations from each state. This renders this model, and the models

that follow in this chapter, semi-Markov.

2 e o R W

Approximate Markov process !

Since the non-perturbed semi-Markov process for class 1 and the transition

DOUCIOE b g WO ) ; R ;
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kernel elements for exits from class 1 are similar to those in Case I, the non-

perturbed semi-Markov process stationary probability distribution for class 1 and 4

are the same. These results are repeated for convenience here,

1) =[0.2600 0.7301]7,

A=0.9391.

(5.34)

However, there will be different eventual transition probabilities from aggregated

"state” 1 to aggregated "states” 2 and 3. They are evaluated as follows:

(1) (21
= e
p ,_._..'EEI
21 > ”(IM)"('I)
ieE,

where

(1) (1)
i ) i
JEE,
therefore,
q(ll) =6
qg) =9

and,

(21) _ (1)
G =2 9
JEE,
therefore,

‘ - . AL
ANASALA AN WA A S AR A A N R N Yy i\

P

L Bl P p® PAT R 2" a™a"
£ b 0 oy o W My ...n t‘

(5.35)

(5.36)

Py

(5.37)

L




21 1
o= =3

= o
substituting these quantities into Eq. (5.35), then

Py = 0.6111 (5.38)
Since class 1 can only transit to classes 2 and 3 :

Py = 1 — pyy = 0.3889 (5.39)
Then the transition kernel elements exiting aggregated "state” 1 are,

!

— 06111 09391 .
b (8) = 08111 o (5.40)

— 0.38 0.9391 5
831 (o) 3889 s + 0.9391 (5.41)

If the initial state probability vector is,
r(0)=[1 0 0o o (5.42)
then the probabilities in classes 2 and 3 in scaled time t’will be approximated by:
75 (¢) = 0.6111 [ 1 — ¢~0-9391 ) (5.43)
7l (t) = 0.3889 [ 1 — ¢ 09391 (5.44)
or, in the original time scale,

-6
”; (t)=06111 [ 1_6—0.9391)(2.5)(10 t] (545)

-6
mo (8) = 0.3889 [ 1 — =091 x25x10 Tt (5.46)



Exact solution of the original semi-Markov process
The exact solutions for @;,(t) and '¢“(t) are evaluated analytically with the
help of MACSYMA. If the initial probability distribution is as in Eq. (5.42) then,

PEz(t) =&,, (1) (5.47)
PEs(t) =d,,(!) (5.48)
that is,

PEZ(t) = 3.15232¢~13 ¢~0-11500¢ [ __ | 93850¢12 sink(0.114998¢)

— 1.93859¢12 cosh(0.114998t) | — 1.02947¢—6 ¢~ 0-4¢
+0.61111 (5.49)

PEa(t) = 3.15232¢—13 ¢~0-11500 £ [ _§ 93384612 sink(0.114998¢)

— 1.233683¢12 cosh(0.114998 ¢) — 8.77778e—6 ¢~ 0-5¢
+ 0.38889 (5.50)

It can be seen that the interval transition probability functions from state 1 to
state 3 and from state 1 to state 4 are a sum of exponential terms despite the fact

that all of the holding time density functions in the model are exponential.

Comparison of results

The exact and approximate class probability results in the closed form
obtained above are evaluated and compared at different time points up to 10,000
seconds in Figure 5-5. From the numerical results in the figure, it can be seen that
the.maximum error occurs in the fifth decimal place up to t=10,000 seconds. The

approximate class probability distribution when all the probability in class 1 has

moved to classes 2 and 3, can be obtained by substituting Eq. (5.45) and (5.46) with

- -
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exact approximate exact approximate
t/sec. class 2 class 2 class 3 class 3
probability probability probability probability
(] e
PEz(t) L4 (t) PEs(t) L4 (t)
5 0.00001 0.00001 0.00000 0.00000
50 0.00007 0.00007 0.00005 0.00005
200 0.00029 0.00029 0.00019 0.00018
1000 0.00143 0.00143 0.00092 0.00091
5000 0.00713 0.00713 0.00455 0.00454
10000 0.01418 0.01418 0.00903 ' 0.00902

Figure 5-5: Comparison of approximate and exact classes probabilities

t=00. The results are:
mC (00) = 0.6111 (5.51)

7, (00) = 0.3889 (5.52)

The class probability distribution at t=oc can also be obtained from the
exact solution in Eq. (5.49) and (5.50). All the terms in both equations except the

constant terms will vanish when t==c0, so the class probability distribution will be,
P52(°°) = 0.6111 (5.53)

Pg, (00) = 0.3889 (5.54)
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By comparing the exact and approximate results, it can be speculated that the
entire class probability history is well approximated by the approximate Markov

process.

It was demonstrated in this example that the class probability trajectory is
also well approximated by the approximate Markov process for a particular model

where a class can transit to two different classes.

5.3 Case II1

The 9-state model and the models in Cases [ and II do not yield an associated
aggregated model for which classes 2 or 3 can transit back to class 1. This
situation would arise in models of fault-tolerant systems that include on-line repair.
This provides the motivation to create a new model to demonstrate the accuracy of
the approximate Markov process for this situation. The new model is similar to the
one used in Case II in that class 1 can transit to both class 2 and class 3. However,
class 2 can transit back to class 1 in the new model. The state transition diagram
of this new model is shown in Figure 5-8. The transition kernel matrix is similar to
that of Case II except that there are transitions possible back to class 1 from class
2. This yields two new nonzero off-diagonal elements in the transition kernel

matrix, which is defined as follows:

[ 0 (03 —Teph e ™1t 2eh 7™ 0
(1= Bege™ 2t (0.7 — 26 e 2t ded e 0
P(t) = (5.55)
2eh e3¢ Behge 3! (1-Be)xze 3! 0
-, t -2, ¢ -\t
| 4™ 3eh e 0 Ae M
‘1'\"”.5 ‘n‘ 3.’ ‘;"..“' ‘e ..\.., i‘,‘l.;‘a..‘l'-“ . l'A !'. 'u."|'..ﬂ.'ll .u ’o‘l', [ Y .n 4 .; ". 'q [ ) \ F ‘ I'D( K < N " ’ o, ’ Ve ety " ..’..
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2 D class 1
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S e class 2
@ class 3

Figure 5-8: State transition diagram for Case [II

where A, =0.2, X, =0.1, \y=0.4, A ==0.5, ¢==2.5x10C, ( all units are in sec™! ).

Stationary probability distribution of the non-perturbed semi-Markov
process *

The structure of the process in this case is different from that of Case II.
However, the non-perturbed process in class | is exactly the same as that of Cases |

and [I. So the stationary probability distribution is the same as before, namely:
“l=(02000 o07301|7 (5.56)

Since classes 2 and 3 each consist of only one state. their stationary distribution

are,

)T (5.57)

W=7 | (5 58)




Approximate Markov process
Because of the similarity of this process with that of case II, some of the

parameters of the approximate Markov process are the same, and they are stated

here:

Pqy = 0.6111 (5.59)
Py = 0.3889 (5.60)

A, = 0.9301 (5.61)

In this model, however, class 2 can transit back to class 1, so Ay is calculated

as follows:

(2) (2

a,=230
21 .(2)
3 3
(2)

= '3_o (5.62)
ag')

where

=3 =6
JEE,
"32’ =2 Pa'n
JEE,
== pss/k3
=25

Substituting these quantities into Eq. (5.62) :




A‘Z = 6/2.5
=34 (5.83)

Class 2 transits only to class 1, therefore

017 (0) = 24 (5.64)

Then the approximate aggregated Markov process in the new time scale is

characterized by the following Laplace transformed transition kernel matrix,
. 2.4 -

0 (0 +24) 0
- 0.9391
P (9) 0.6111 T+ 0.989T) 0 0 (5.85)
0.9391 2
I 0.388¢0 (—‘m 0 3+1 J

or in the scaled time domain,

[ 0 2.4¢ 24 0o |
P (t)==] 06111 x 09309109391 0 0 (5.68)
| 0.3880 x 0.9301¢ 0 90K 0 et |

If the initial condition of the process is

0 =[(1 0 0 o] (5.67)
then,

T () =& (1) (5 68)

By using continuous time Markov theory, the interval transition probability matrix

and then t: (¢) in the original time scale are found to be: |
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-8
%} (£) = 1.0710¢—8 ¢~ 10090 x 2510 4 1 4 9338 gink(1.3824 x 2.5x107% 1)
+ 0.3373¢7 cosh(1.3824 x 2.5x107% ¢) | (5.69)

-6
%3 (1) = 4.1517e~1 e~16090x 2.5x10° Tt 410 h(1.3824 x 2.5x1070 ¢) (5.70)

-6
%3 () = 1.0710¢—8 ¢~10696 X 2.5x10 4 [ _g.8103¢+7 ainh(

1.3824 x 2.5x1070¢ ) — 0.3372¢7 cosh(1.3824 x 2.5x107% ¢) |
+ 0.99009 (5.71)

Exact solution of the original semi-Markov process

The exact solution of total probability in each class in this example is
calculated numerically by the same matrix convolution sum method as was used for
the 9-state model. The normalized probability distribution in class 1 was
calculated analytically with the Lelp of MACSYMA. The results appear below.

Comparison of results

The results for the exact and for the approximate class probability
distributions are compared in Figure 5-7. This example shows again that the exact
aggregated probability distribution is well approximated by the enlarged process

because the maximum errors occur only at the fifth decimal place.
]

The normalized probability distribution in class | is shown in l;‘igure 5-8. It
can be seen from the normalized probability distribution history in Figure 5-8 that
stationarity is established after t=200 seconds When this is compared with the
stationary probability distribution of the non-perturbed process in class 1 that s

given in Eq. (5.56), it is found that they agree up to four decimal places

It bas been emphasized here that in this model. there are transitions possible
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exact approximate exact approximate

t/sec. class 1 class 1 class 2 class 2
probability prob.sbility probability probability

P"-'xm (0 Psz(l) r; (¢)

10 0.00007 0.90008 0.00002 0.00001
100 0.90077 0.90977 0.00001 4 0.00014
200 0.99953 0.90053 0.00028 0.00029
500 0.90885 0.90883 0.00070 0.00072
1000 0.90772 0.90768 0.00139 0.00143

| . [
t/sec. exact class 3 approximate class 3
probability P (¢) probability r; (f)
3
10 0.00002 0.00001
100 0.00010 0.00009
200 0.00018 0.00018
500 0.00045 0.00046 l
1000 0.00089 0.00091 |

Figure 5-7: Comparison of approximate and exact classes probabilities
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t/sec. state 1 state 2
0 1.00000 0.00000
10 0.4791 0.5209
50 0.26449 0.73551
100 0.26089 0.73911
200 0.26088 0.73914
500 0.26086 0.73914
1000 0.26086 0.73914

Figure 5-8: Normalized probability distribution in class 1

both out of and into class 1 and it has been shown from the results above that the
semi-Markov process is well approximated in this case when the enlarged process is

expanded by the stationary probability distribution of the non-perturbed process.

5.4 Cane [V

For some fault-tolerant system semi-Markov models, there may be trapping
states among some classes of states. Under these circumstances, the ergodicity
condition in the Theorem presented in Chapter 2 will not be satisfied by these kind
of models. It is of interest to know whether the approximate technique will be
valid for some of these models. So, in this 4-state example, a model with two non-

ergodic classes is created where each class consists of two states. The state

(o ¥ ¥ o P WO V' P A P ol FOAOA A
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transition diagram is shown in Figure 5-9 and the process is governed by the

transition kernel matrix in Eq. (5.72).

(0.5 — et 0 0 0 ]
(0.5 — Se)hye 2 (1 — Qe)h e e 0 0
P(t) = (5.72)
2¢X3e'x3t 66)‘3e’x3‘ 0.4)‘3e'X3‘ 0
I kx‘e'“it 3e 4e"\i‘ 0.6X4c‘)‘4‘ A 4e‘)‘4‘ ]

where 2 =0.2, Xg=0.1, \;=0.4, X\;=0.5, €=2.5x109, ( all units are in sec”! ).

W Class 1

{ N / \
[ N / !
| N / \
NS !
\ /‘\
\ P |
Ve ~N

class 2

Figure 5-9: State transition diagram for Case [V

Stationary probability distribution of the non-perturbed semi-Markov
process
By decomposing the transition kernel matrix, the transition probability

matrix of the non-perturbed imbedded Markov process is as follows:

AT ALY LT ™

2 - r FRE - » .
Syt Nt Bt IGO0 SR UM O N AU N W G 0 S, Y, aOn{n ) S )



By raising the transition probability matrix to successively higher powers until

stationary is established, the stationary interval transition probability matrix is

found to be,
[ 0 0 0 0 |
1 1 0 0 5.74
P = (5.74)
0 0 0 0
o 0 1 1]

Therefore, the stationary probability vectors of the non-perturbed imbedded

Markov processes in classes 1 and 2 are:

,_r(lM)=[o )T (5.75)
dd=(0 1T (5.76)

Hence, the stationary probability vectors of the non-perturbed semi-Markov

processes are,

=0 1T (5.77)

=10 1T : (5.78)




-104-

Approximate Markov process

The Laplace transform of the transition kernel for transitions from

aggregated "state” 1 to "state” 2 is given by

— 4,
¢21 (8) = P9 7 +Al
where
R
_i€g
R
i€eE

From the transition kernel matrix in Eq. (5.72)

W=dd=s

1) _ —
"(2 = Pgy Toe =10

Substituting the above quantities and Eq. (5.75) into Eq. (5.80) gives

qu(ll)+9

1 = 0.9

0x r(ll)+ 10

and from the structure of the model,

Py =1

(5.79)

(5.80)

(5.81)

(5.82)

So the transition kernel element for transition from aggregated "state” 1 to 2 in

new time scale is,

- 0.9
8) =
¢21 ( ) s+09

nnnnn

(5.83)




or in the scaled time domain,
By, () = 0.9 70 (5.84)
Because there are only two classes:
ro(t) = 709 (5.85)
7l () =1-¢09¢ (5.86)
In the original time scale,

-6
"i (t) = e~09%2:5x107"¢ (5.87)
-6
”; (1) =1 — ~0.9%x2:5x107" ¢ X (5.88)
Exact solution of the original semi-Markov process

Exact solutions in closed form of the total probability and normalized

probability distribution in class 1 were evaluated with the help of MACSYMA and

they are,
PE1 () =m (¢) + 7, (2) (5.89)
n{t)=m (t)/PE1 (¢) (5.90)
Hht)=m, (t)/PE1 (t) (5.91)

where,
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-2 -1
7, (t) = 1.00339x10° ¢~9-9999%x10° 4 _ 1 0338105 ¢~ 1.00000x10° ¢

-1 -1
+ 3.33334x1078 ¢~ 40x10° "t 4 7500001078 ¢~5-0x10 ¢
— 5.64491x107° (5.92)

T, () = 1.54580x10~ 12 ¢=5.00014x10™2 ¢ [ 6.49386x10'6
cosh( 4.99991x10™2 ¢ ) — 6.49373x10'0 sinh( 4.99991x10"}2 1) |
— 1.00382x10% ¢~9.99999x107% ¢ _ 1 94508, 10=6 o~ 40x107 ¢
— 5.62408x10~7 e=50x107 ¢ _ § 474740104 (5.93)

Comparison of results

The total probability of occupying class 1 obtained from the approximate
aggregated Markov process and from the analytical solution of the original semi-
Markov process are compared in Figure 5-10. The exact and approximate solutions
listed in the figure agree to four decimal places except after one million seconds

have elapsed where the error occurs in the fourth decimal place.

The exact normalized probability distribution history within class 1 is shown
in Figure 5-11. It can be seen from the results in the figure that the stationary
normalized probability distribution agrees with the stationary probability
distribution of the non-perturbed process in class 1. The trajectory converges

within less than 0.0003 absolute error after t=100 seconds.

This example, which consists of two non-ergodic classes, shows that the
original process aggregated probability distribution history is well approximated by
the approximate process and that the normalized probability distribution in class 1
converges to the stationary probability distribution of the non-perturbed process

after a brief transient period, even though this model violates the sufficient

condition stated in references [4, 5] that the non-perturbed classes be ergodic. The
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t/sec. approximate class 1 exact class 1
probability 1r; (¢) probability 1r; (&)

10 0.99997 0.99998
100 0.99976 0.99978
200 0.99954 0.99955
500 0.99886 0.99888
1000 0.99774 0.99775
5000 0.98880 0.98881
10000 0.97773 0.97775
1000000 0.10527 0.10540

Figure 5-10: Comparison of approximate and exact probability in class 1

t/sec. state 1 state 2
10 0.55183 0.44817
100 0.00027 0.99973
200 0.00000 1.00000
500 0.00000 1.00000

Figure 5-11: Normalized probability distribution in class 1

implication of this example is that some non-ergodic models can be analyzed with
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the approximation technique. This opens a wider scope of fault-tolerant system

models to be approximately analyzed by this technique.

5.5 Case V

The example model in this case, the last in this chapter, comprises four
classes, and both classes 1 and 2 can transit to class 3. This situation is found in
none of the models examined before. In this section, only the exact and
approximate probability in class 3 will be examined. The state transition diagram
is shown in Figure 5-12 and the process is characterized by the following transition

kernel matrix:

(1 — 60e)x e~ ™1 0 0 o ]
0 (1= 9e)h et 0 0
Py = (5.94)
20€) 4¢3t Behge 3t Ngem Nt 0
i 406)‘4e-)‘4t 36)\4e-)‘4‘ 0 >\4e')‘4t |

where X\,=0.2, )\2=0.1, A3=0.4, \;=0.5, e=2.5x1075. ( all units are in sec’! )
States 1, 2, 3 and 4 are classes 1, 2, 3 and 4, respectively. Class 1 and 2 both

transit to class 3.

Approximate aggregated Markov process
The Laplace transform of the transition kernel elements for transitions from

aggregated "state” 1 to 3 and from aggregated "state” 2 to 3 are both given by:

W -

Ay
.s+A/c

From the parameters of the transition kernel matrix in Eq. (5.94), the following

. » P " W N gl A - SCOPRTR I
N 'l‘v'n‘-. At 'J.lt“.;'.‘ NS ) FOLCAX I X% X\ AN AN N \.‘\‘l\' { LN N ) :"-C v‘l‘ ALY {3 X} J~-b ‘! .& M \\? ‘.\ .l \ » A
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Figure 5-12: State transition diagram for Case V

approximate Markov process parameters are evaluated:

(m_ (1) _
9, =4, = 60
ql = q“ = 20

1) _ _
"1 =1 =>3

Therefore,
(1)
A, = qL =12
1 I 1)
1
and
q(3l)
p3l — 1 = 03333
q(l)
1

class 1

class 2

class 3

class 4

(5.98)

(5.97)




2) _ (3)
"(z ""22"’

Therefore,

2
=_2_=09 5.98
L= (5.98)

2
and

= 2_ = 0.6667 (5.99)

So the kernel elements for transitions to "state” 3 of the approximate aggregated

Markov process are:

64, (3) = 0.3333 ’_i_’l.; (5.100)
93, (o) = 0.6667 03 (5.101)

or, in the scaled time domain,
~12¢ ‘
95, (') =03333x 12712 (5.102)
64, (t') = 0.6667 x 0.9 ¢ 09 ¢ (5.103)
If the initial state probability vector is,

0)=[05 05 0 0]7 (5.104)

then the probability in class 3 is,
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# () = 0.5x0.3333 (1 — e~ 12¢) 4 0.5x06667 (1 — 09" (5.105)

or in the original time scale,

-8
78 (£) = 10.5x 0.3333 (1 — 712X 281077t

-6
+0.5x0.6867 (1 — ¢~09x2:5x10 "t (5.106)

Exact solution of the original semi-Markov process
The exact solution for the probability in class 3 is evaluated analytically with

the help of MACSYMA and the result is :

-6 -1
P53(¢)=0.5[—6.66655x10"1 e~ 225x10 7t _ 1 12501x1075 =4 0X10 ¢

~5
+ 6.66667x107! | + 0.5 [—3.33308x10~! ¢ ~30x10 "¢

-1
— 2.50019x10~% ¢—40x10 "¢ | 3 3333310"! (5.107)

Comparison of results
The approximate and exact probabilities in class 3 are compared in Figure
5-13. It can be concluded from the comparison of results in the figure that the

approximate aggregated Markov process approximates well the behavior of a model

in which two classes can both transit to a single trapping class.

3
{]
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t/sec. exact class 3 approximate class 3 '

oqe oy [ ] N

probability PE3(t) probability 7, (t) _‘

10 0.00008 0.00008 X

100 0.00059 0.00057 4

t

500 0.00287 0.00285 i

Y

1000 0.00569 0.00568 :

'

5000 0.02696 0.02694 :

10000 0.05062 0.05081 ¢

¢

1000000 0.46487 0.46487 !

.

2

Figure 5-13: Comparison of approximate and exact probability in class 3 ‘

\

'y

5.6 Closure

\

In this chapter, five models were created and the approximte Markov process g

technique were further tested beyond the 9-state model. The five different cases <

represent a range of class to class transition structures which include transitions '

from ergodic class to ergodic class, transitions from one class to two different E
classes, two-way communicating classes, transitions from two differez‘xt classes to a

single class, and non-ergodic classes. All the approximate aggregated Markov h

processes in these five cases characterized the behavior of the exact aggregated 4- :
state models very well. That is, the class probability distributions were well

t

approximated by the approximate Markov processes. Furthermore, the normalized X

t

. -.%a.' )
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probability distribution trajectories converged almost exactly to the stationary
probability distribution of the corresponding non-perturbed semi-Markov process

after a brief transient period.

In conclusion, for these five models, the state probability distributions can be
well approximated by expanding the enlarged processes results with the stationary
probability distributions of the non-perturbed processes. It is speculated that in
general the approximate technique work well for most fault-tolerant system models.
However, there are some limitations for these results to be applied to certain types

of system models. These shortcomings will be discussed in the Chapter 7.
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Chapter 6
Relaxation of Ergodicity Condition

The second sufficient condition stated in Chapter 2 for the approximate
Markov process to be non-trivial is that the imbedded Markov chain of the non-
perturbed process within each class must be ergodic. However, it was shown in
Case IV in the last chapter that both elements of the approximate results can be
valid even when the non-perturbed processes are both non-ergodic. Although the
classes for Case [V are non-ergodic, the stationary probability distribtttion could be
found for both classes and they are unique. This led to further invest.igation of the
sufficient conditions for the semi-Markov processes to be approximated by the
approximate technique and the result is that Korolyuk's Theorem can be modified
as follows:

Theorem: If a semi-Markov process depends on a small parameter ¢

such that its state space can be partitioned according to Eq. (2.5) and is

time-scaled according to Eq. (2.7) and additionally if the transition
probability operators P, for the imbedded Markov process of the k-th

class of the non-perturbed semi-Markov process satisfies:

n
nlimoo%ZPi=[g e...e] (6.1)
(m]

Then the aggregated semi-Markov process can be approximated by the

enlarged process defined by Eq. (2.19).

Proof: The proof follows an identical line of reasoning to the proof in

Chapter 2 until the point where the functions ¢(r'2(s) are shown to satisfy

By

LY
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the system Eq.(2.18). The system equations can be rewritten in linear

equation vector form:

O ()T = Sk ()T P, (6.2)

Postmultiplying the above equation by the operator P, and using Egq.
(6.2) on the result gives:

g, (8T =9, (T P : (6.3)

By successively postmultiplying the system of equations and replacing
the left hand side by Qrk(s)T, and averaging an infinite number of these

" equations:

n
8., (0T=9, (s)T[ lim 13" Pi] (6.4)
n — o0 (=1
4 Since the operator P, defined by p}!‘) satisfies Eq. (6.1), then, by linear
equation theory, the solution of the system of equations in Eq. (6.4) is

¢ independent of the superscript, that is:

s W) =900 J€E, (6.5)

The remainder of the proof that the aggregated model is Markovian and

) the derivation of parameters of the approximate Markov process will be
exactly the same as that of the remainder of the proof in Chapter 2.

v.:. This extended Theorem is a relaxation of the ergodicity sufficient condition

. stated earlier in Chapter 2 imposed on the semi-Markov process to be

. approximated.

o It is of interest to find conditions under which Eq. (6.1) is satisfied. Along

~ e e m
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these lines, the following theorem is established:

Theorem :

(1) If the imbedded Markov process, which is defined by the transition ‘

operator P, of the k-th class of the non-perturbed semi-Markov process
is ergodic, ,

or y

(2) If it is nonergodic with one and only one eigenvalue of unity,

Fad i P o )

then the operator P, satisfies Eq. (6.1).
Proof :

(1) By the ergodic Theorem,

s -

llim Pl=I,=[ce...cl (6.6) ‘
- 00 ]
L]

and, :
:

. 1 ~ i . 1 . i 1 = l ‘
nlimm;ZPk=nlex{;ZPk+n_rZ P} (6.7) :
l=1 l=1 l=r+1 :

where r is finite but large such that,

P ~1I, (6.8)

Therefore, Eq. (8.7) can be reduced to:

n n
- 1}: Ly 1 Z { ‘
lim = Pk— lim —— Pk (6.9) y
n— 00 n — oo .

{==1 l=r+1
By Eq. (6.8), it follows:

n
lim %ZP2=H,¢=[5 e...e]
n -+ o0 [ol

RGOS RGOS DO .,i'i,c LI .4‘04 L A Y .q J‘O, ,."_ 1‘!4 " W ' > LY ‘. "* F‘-\' .' ¥ ".\..'P. '\'\'- £87
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which proves the Theorem for this case.

(2) The operator P, can be put in Jordan form by the following

transformation:
P=T4, T} (6.10)

where T is a square invertible matrix with columns made up of the right
eigenvectors (or generalized right eigenvectors) of the operator P,. By a

proper ordering, A, has the form:

A\

A |

00
Ak= ----- ip.:______
0o |

where {\, ... ,Xp} are the unit magnitude eigenvalues and J is a Jordan
form matrix containing all the eigenvalues of less than unit magnitude
on its main diagonal. (This form is known to exist for a stochastic
matrix Pk because the unit magnitude eigenvalues must have a full set of

linearly independant eigenvectors.) Therefore:

n n
: 1 Ly 1 1)
lim ;E Pk_ lim ;E [TAkT ]
=]

n—o n — Q0
l==1
n l 1
— ; 1 -
=T| lim ;Z Ak]T
T

(6.11)

Since A4; has one and only one eigenvalue of one:
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n
lim lz A i = diagonal matrix with a single non-zero
n

n = 00
|==1

element of unity on its main diagonal

because lim %Z?_l Ji =0 and lim izl"al Xi.= 0 if [kj[=1 and
n = & n—o
A j# 1. Because P, is a stochastic matrix, the left eigenvector appearing

in the row of T! corresponding to the unit eigenvalue is {1]T .

Therefore:

n—oo®

n

. l - ’

lim lZAk]T1=[g...1..‘0]T (6.12)
=1

Therefore :

n
T[ lim 1 ‘]T'1=T[o.

n—ooh
=1

(6.13)

That is,

n
lim 1) P=TA,T'=[ce¢...
mee

which completes the proof.

e] (6.14)

As an illustration of the implication of the sufficient condition stated in the
second Theorem, valid and invalid examples of state transition structures are in
shown Figure 6-2. Note that one of the valid examples in Figure 6-2a includes
periodic intraclass behavior. The invalid example in Figure 6-2b has 2 eigenvalues

of one because 2 trapping sets are present in single class.

As a result, fault-tolerant system models with non-ergodic classes that satisfy
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toand fromE, ,E;€Eandi 3

E;
toand fromE, ,E,€Eandi #j
E;
T T
[ |
! L
Sy Le S

toand fromE, ,E.€Eandi %

Figure 6-2a: Valid non-ergodic classes
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toand fromE, ,E;€Eandi 5%

- ~

= A
T

toand fromE, ,E,€Eandi #;j

Figure: 6-2b: Invalid non-ergodic class

the condition stated in Eq. (6.1) will be approximated well by the approximation
technique developed in this thesis. This explains why the approximate solution is
valid for Case IV in Chapter 5. Note that there may exist fault-tolerant system
models with non-ergodic classes in forms which do not satisfy Eq. (6.1) that may
also be treated by the approximation technique because the Theorem is a sufficient

but not necessary condition.
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Chapter 7

Some Limitations
on the Approxrimate technique

The approximate technique were demonstrated to be successful for the 9-state
model and for five 4-state models in Chapters 4 and 5, respectively. The two
elements that comprise the approximate technique, namely the enlarged process
and the stationary probability distribution within each class, are valid for these
examples. However, there are limitations for the approximate technique to be
applied to certain types of system models. These limitations will be discussed in

this chapter.

In the derivation of the approximate Markov process in Chapter 2, the limit
of ¢ was taken to zero for the aggregated semi-Markov model to behave as a
Markov process. This means that the failure rate of the instruments of a fault-
tolerant system have to be small enough for the results to be well approximated by
the enlarged process. One of the alternatives for investigating the values of ¢ for
which the approximate Markov process diverges from the original aggregated semi-
Markov model is numerical methods. The small parameter € of the model in Case |
in Chapter 5 was varied and the enlarged process "state” probability history was
compared with the original semi-Markov model class probability history. The
largest absolute error in the class 1 probability history obtained from the enlarged
process is shown in Figure 7-1. It can be seen that the approximate Markov
process starts to diverge when ¢ reaches the value 2.5x10°2, which is one fourth of

the slowest transition rate within class 1. The implication of this result is that the

L) L) » 0

v "-"n - A
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largest absolute error f
€ in class 1 j
probability history

2.5x10°8 1.8x10° Q
2.5x107 1.3x10°3 f
2.5x10°3 : 1.6x10°2
2.5x102 1.2x10°!
5x1072 2x10°! :

Figure 7-1: Largest absolute error in class 1 probability history obtained
from the enlarged process for the model in Case I

systems to be approximated must have a small failure rate or small perturbation
parameter relative to the transition rates within each class. If the result in this
particular case can be extrapolated to other cases, then ¢ cannot be larger than 1

order of magnitude smaller than the slowest intraclass transition rate.

In semi-Markov process models, the classes are often defined by the number ,
of working and failed instruments. Occasionally, a system’s system loss state is
defined by different numbers of failed instruments, e.g. one wrong isolation may be
as catastrophic as two uncovered failures. In these cases, the system model will
contain two or more non-ergodic classes. These non-ergodic classes may not satisfy
the relaxed sufficient condition defined by Eq. (6.1) and failure of the approximate |

technique may result.

The restrictions mentioned in this chapter limit the class of fault-tolerant

system models to which the approximate technique can be applied. Note however

PRICTAN 7 J¢ > A o A% | " ) o Pyl > v | v Y . o ) e - Nyt Lt N Lt AT A LA A
B A N M AR NGO o IR 2 e T P N AT W o W £ A A M N G ™ St YR 0> S
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that for a broad class of models, the relaxed sufficient condition is satisfied and the

validity of the approximate results is assured if ¢ is small enough.
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Chapter 8

Summary, Conclusion and Suggestions
for Further Research

8.1 Summary of Thesis

Semi-Markov models of large fault-tolerant systems whose redundancy
management scheme employs sequential tests are usually intractable to practically
obtain the desired length of state probability distribution histories due to the high
computational cost. New methods to evaluate the state probability history of such
systems in an efficient way are needed because of the growing use of complex fault-

tolerant system designs.

This thesis has developed an approximate technique based on enlarged semi-
Markov theory for assessing the state probability distribution histories of models of
fault-tolerant systems that employ sequential tests in their fault detection and
identification logic. Emphasis was placed on the extension of the theory to fault-
tolerant system semi-Markov models. Secondary emphasis was placed on the
demonstration of accuracy of the two elements of the approximate results. which
involve expanding the enlarged process by stationary probability distributions. The
use and accuracy was examined for a 9-state model and for various class to class
structures that mimic fault-tolerant system models. An extended theorem, with
the relaxation of the conditions tLat a fault-tolerant system model inust satis{y for

it to be approximated by the enlarged process, has been presented. Also. the

limitations of the approximate technique to certain types of fault-tolerant systems




was discussed.

8.2 Conclusions and Contributions

The approximate technique developed in this thesis can be used to quantify
the performanceof those fault-tolerant systems with component failure rates small
relative to the fault detection and isolation decision rates. This thesis has shown
that the approximate technique can be a practical tool to simplify the

quantification of large complex fault-tolerant system performance and might also be

an efficient tool in the synthesis of such system designs.

The contributions of this thesis can be summarized as follows:

(1) Korolyuk’s limit Theorem was extended by generalizing the form that
the transition kernel elements may take, in which they depend through
the holding time distribution on a time scale factor § in addition to
depending on the small parameter ¢ that divides the state space of the
system into classes. An approximate technique based on this extended
Theorem was then presented, by which the state probability history of a
fault-tolerant system semi-Markov model can be approximated by
expanding a reduced order Markov process state probability history by
the stationary probability distributions of the non-perturbed processes
within the disjoint classes. The direct benefit of this approximate
technique is the reduction of the computational cost of generating
results. Therefore, models of large complex fault-tolerant systems

become tractable.

(2) The approximate technique has been presented here, primarily in

Chapters 3 and 4, in such a way so as to illustrate its usage from the

-----



(3)

(4)
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construction of a 9-state semi-Markov fault-tolerant system model to the
evaluation of the approximate solution for this model. Thus, the
material in these two chapters provides an outline of the general
procedures to be followed in approximating the behavior of many fault-
tolerant system semi-Markov models. In addition, approximate results
for five cases of different class to class transition structures for fault-
tolerant system inodels were examined where one of these models

contains two non-ergodic classes.

Preliminary results were obtained for the effect of increasingly large ¢ on

the error of the approximate technique.

An extended theorem with the relaxation of the ergodicity condition
stated in Korolyuk's original work was presented and proved in Chapter
6. As a result, the approximate technique can be applied to a wider
scope of fault-tolerant system models which includes those with certain
types of non-ergodic classes. Another theorem also presented in Chapter
8, establishes properties of the transition probability operator P, of the
imbedded Markov process for class k within the non-perturbed semi-
Markov process which imply satisfaction of the relaxed sufficient

condition.

8.3 Suggestions for Further Work

The results of the approximate technique and the limitations of it suggest

L.

possible areas to which further consideration might be given. Some of these will be

listed below:

The realistic model that the approximate technique was applied to in
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this thesis is the 9-state model described in Chapter 3. One of the
assumptions in the model construction is that the failure rates of all
three instruments are the same. However, in more complex systems
there might be several types of instruments and each one of these may
have a different small failure rate. Then the models of such systems
would involve more than one perturbation parameter. The construction

of an approximate technique for such systems deserves investigation.

There may be situations for which the semi-Markov model of a fault-
tolerant system may be characterized by several different orders of mean
time to transition between states. This may arise when the false alarm
rate or repair rate is much slower than the fault detection and isolation
decision rate or the self-test decision rate but is still much higher than
the failure rate of the instruments. This gives room for the investigation
of accuracy and convergence of the approximate solution for models with
different combinations of relative order of perturbation parameters and
two or more different orders of mean holding time distributions for

transitions between states.

The ergodicity condition within Korolyuk's Theorem was relaxed in
Chapter 8, as a result a wider class of fault-tolerant system models can
be approximated by the approximate technique, but it is of interest to
know how many fault-tolerant system models in real situations fall into
the category of models that do not satisfy this relaxed condition. The
versatility of the approximate technique can be better understood if the

transition structures of general fault-tolerant system are better known.

In reference [5], the proof of a limit Theorem for semi-Markov processes,

from which the enlarged process is deduced, depends explicitly on the
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existence for each class E, of the inverse operator [I-Pk-}-Hk]'1 where,
I=identity operator

P, =transition probability operator for the imbedded Markov process of

the non-perturbed semi-Markov

[T, =cesaro limit of the multiple step transition operator associated with
Pk

As is stated in [5], if E, is an ergodic class when ¢=0 then [I-Pk+ﬂk]‘l is

guaranteed to exist. Hence, the ergodicity of E, is a sufficient condition

for the existence of [I-P‘k+11'k]'l which in turn is a sufficient condition for

the Theorem. However, ergodicity is not necessary for the existence of

the inverse operator. That is, ergodicity is not necessary for the

enlarged process to be valid and this was proved in the Theorem

presented in Chapter 6. Further understanding of this inverse operator

and the relationship with the relaxed condition may lead to further

relaxation of the conditions for applying the approximate technique.

This would allow application of these results to a even wider class of

fault-tolerant system models.

5. The effect of nonzero ¢ on the error of the approximate results for case |

of Chapter 5 was examined in Chapter 8. This provides some insight

into the accuracy of the approximate solution with different ¢ for that

particular example. However, this needs further investigation for other

more general system models.

8. MACSYMA is a powerful symbolic manipulation tool and is also a

numerical evaluation software package. Perhaps the ultimate

application of the approximate technique developed here would be to
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develop 3 MACSYMA command “program” that will input the
transition kernel matrix of a fault-tolerant system model and evaluate all
the non-perturbed processes stationary probability distributions and
enlarged process state probability distribution histories in order to
directly generate the approximate state probability histories. This
package would greatly reduce the time required for reliability engineers

to design or to optimize the parameters of complex fault-tolerant

systems.
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Appendix A
Interval Transition Probability Matrix of
Semi-Markov Processes

A.l Interval Transition Probability of Discrete Parameter Semi-Markov

Processes

The following material follows that of (3].

Let a time-invariant finite state discrete parameter semi-Markov process be

characterized by the transition kernel elements defined by,

Pji (m)= Pji hj,' (m)
Pr { transition { — j occurs at sample m |
state i entered al sample 0 } (4.1)

The first step to derive the interval transition probabilities is to consider the
waiting time for each state, which is the length of time spent in a state following
its entrance before a transition occurs to the same state or to a different state. In

mathematical terms, if
w; (m) = Pr { waiting time = m | enter i at 0] (A.2)

then,

N
w;(m)=3"p;h;(m) (4.3)
J=1

In addition, if >wi(u) denotes the waiting time in state i is greater than n samples,

then

- < - ~ Ay e AR R R ICI T N - R T L SO SR T TP L R g
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o)
>w'. (n)= Z w; (m) (A4)
masn+1
Now let ¢ji(n) is defined as the probability that the discrete-time semi-Markov

process will be in state j at time n given that it entered state i at time zero. Then
by considering the possible ways that the process that started by entering state i at

time zero ends up in state j at time n, the following equation is reached,

N n
¢ji (n) = 6_,',' >w,‘ (n) + Z Py z ¢jk (n—m) h;; (m)
k==1 m=(0

i=12.N;;j=12..N;:n=0,12,...

1 1=
5.'.={ . (A.5)
ToWod#

This equation can be placed in matrix form, if the following notation is adopted,

Wim) = { G (m)}, W)= {(5;>u;(n)},
{ P=H (m) }j,' =Pj hﬂ(m). (A.6)

Then by interchanging the order of summation, Eq. (A.5) can be rewritten as,

¢ (n) = >W(n) + ‘Z: & (n—m) [ PsH(m)| , #(0) =TI (A7)

m==0

A.2 Interval Transition Probability Matrix of Continuous Pafameters

Semi-Markov Processes

In the continuous parameter case, let the semi-Markov process be

characterized by the transition kernel element defined by,

pj{(‘) =P, hj,'(t) (A.8)

Ty

KOS, '.‘.p.‘. A ... -'v “ .“ '." “‘....'..' .‘ P- ' h". - v - ) . - - L] 'v?'\"f .l‘ -’-'- » J'V
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and the waiting time and waiting time greater than t are defined by,

N

w, (t) = Z P by () (A.9)
=1

>w, () = / ® w, (1) dr (A.10)
4

Then by similar lines of reasoning to the derivation in A.1, the continuous

parameter interval transition probability can be expressed as,

N ¢
650 =600+ 3 py; [ 65— by

k=1
i=12,.N;;=12,..N;t2>0
1 1=y
b, = { (A.11)
Polo i
or in matrix form,

t
P (1) ="Wt) + / drd(t—7) [ PasH(7)] ,®(0)=1 (A.12)

0




Appendix B
Characteristic of 2nd Order Erlang
Probability Density Function

An Erlang random variable T of order 2 is characterized by the following

probability density function:

Mite M >0

fT(t)={

0 , otherwise

and a typical sketch of this function looks like the following,

flt)

The function has the following characteristics:

T, expected value of the random variable T, is given by:
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T =E|[T)

— fow 1o (t) dt
% (B.2)

t‘, the time at which the function has a maximum value, can be evaluated by

differentiating the function once and setting the result equal to zero,

%t[=>‘2e")“{l—)\t}=0 (B.3)
Therefore,
=1
A

The cumulative probability up to time ¢* is,

* tt
Pr{T<t }=/O fr(t)dt

== shaded area
= 0.2642 (B.3)
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Appendix C
Transition Kernel Elements of the 9-State
Model

Numerical values of parameters for the transition kernel elements:

)\o = .001 )‘WD = 0.05 )xm =0.1
Xl=0.05 )‘Wl=0‘1 )‘Fl = 0.05

Transition kernel elements for transitions within class 1: The Pji and
q;; are defined by Eq. (2.2), and a,; are defined by Eq. (2.26). The remaining

quantities are:

1721 (t) — Xg ¢ e—()\o + 3¢)t

a:{l—%;}(xo+3e)2te'()‘0+3‘)‘

Py =1
gy, = 6000
ay = 2000

2 - t
Pas () =N}, 0t O\ t+ 1) e Cwo + Ay +3¢)
2 2
ol Dyodwr _, 8Nyo wi }
3 1
Cwot w1’ Owotiwy)
L{(\yo + My + 3¢ 1312 e~ Ciyo + 2wy + 360

A 6 )"
+ { Wo ,, —¢ wao 3 }
Pwo+ w1 Bywotiwy)

(Ao + Ay + 3¢ )2 te o+ dwy + 3¢

T T N S T R T T U .Y > L™
L ¥ W 0 0 W N L WS R
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2 -

2 2
~ Dy dwo _, 8Ny wo }
3 3
Cwo + ) Cwo + 2 wy)
-\ A
.%()\Wo+>\w1+3c)3t2e Pwo + g +36)¢
0
A 8

X-
+ { Wi —c Wi }

2 3
Cwo+ 2 wy) Cwo +2wy)
(Ao + My + 3¢ )7 t e Cwo +owy +3¢

Py = 0.296
P3y, = 0.444
Pag = 0.740
4y = 17.778

Iy, = 17778

g9 = 35.556

a =20
32l

ay, = 13.333
2
P13 (t) = pj, (¢)

Poz () = pgq (¢)

A gy
LIS A 8 S, Y ] ¥
Far e T TV e G e e A S T e Sl N F b A Mo WA MO P e e m S p Mo,
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Transition kernel elements for transitions from class 1 to class 2:

Py () =3e(Nyt+1) e~(hg +3e)¢
3)0

(Ng + 3¢ )2t e=(o+3e)t

=c¢

(rg + 3¢ )

(N + 3¢) e+ 3t

+6 3
{Ag +3¢)

q411 = 3000
q“12 = 3000
94 = 6000

Psa (8) = € o My 2 Fhiwg t Fhy t +1) e Cwo ¥ rwy + 3¢

2 M\ M
=¢ wo Wi l(>\Wo + Ay + 3 )3 2 e~ Pwo* wy ¥ 3!
32
Cwo *+ 2wy t3¢)

(Mo +uwy) 2, ~Owrn + My +36) ¢
+€ =D + Ay +3¢) te Awo + 2wy +34

oy 1 (Mg + My + 3¢ ) e~ Pwo + 2wy +36)¢
OCwo + Mwp +3¢) 0 1

q52l = 2.936
950, = 6.667

5, = 6.667

g5p = 16.297

Pra () =2 € O\yg My £2 Fh gty £ +1) e Pwo t hwy +34¢

2 )
= WOTWL _ L(n, 04+ Ny, +3¢)3 12 e Pwo ¥ dwy + 3¢
55 Pwot 2w
Mo+ iy +3¢)° "

2 (Mg + )
+e2Pwo Wl)q(xwo+>\W1+3e)'-’te‘(*wo”m”"‘

Pwo My t3¢ )-

+€ 2 g + My + 3¢ ) e Pwo + g + 3¢
Do+ My +3¢) VO 1

N RICRNT IR RN d ", OB W ety ; C P . Tp s>
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‘I72‘ = 5.928

Q722 = 13.333

q723 = 13.333

= 32.592

Pg3 ()= P52 (t)
Pg3 (t) = pqq (¢)
Transition kernel elements for transitions within class 2:

Ps, (1) =09 xf f e + 2608

%{0'9‘5‘-’-‘%’5}“,4-2:)'*’te-(*ﬁ’-’s)t

1
\ Ps4
‘154 = 40

p-q (t)=0.1 xf (e~ +20¢

~{0.1—¢ 0——‘1’“ H( >‘l + 2¢ )Qte-(kl + et

e e - awm

1
| 974 =8

3 ! - - - . . . ) ) ) . . ’.
OO LN AURX ATV LA Y * l‘.' 3 0.1y ) l.., U I Wy ' NN M " ‘.' 0, ny . ' ‘. “ L 4‘ o . ,
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"
» 123300 F }
3 4
BCpo+ir1) Dpo*+rrr)
a R
%(XF0+>‘F1+26)3P¢ pg+rp g+ 29t

2
~{ QXFOXFI

2 2
A 4)
+{ Fo —¢ FO }

2 3
CPpotrp)  Pro+)py)
(Apog+Ap, +2¢ ) teProt e + 2t

pss, = 0.206

p552 = 0.444

Pss = Pss + Pss, = 0.740
dgs, = 11852

q552 = 11.852

955 = ‘7551 + q552 = 23.704
assl =20

Qg5 = 13.333

pﬁsu)_—.x"’“ tApgt+1 ye~Rpot Apy et

2 2
%{ 2XFlXF0 —e l’l)«FlXFO }
Bpo+ el Dot e )
%( Npg + Ay + 2 Bt e Ppotrpp Rt

3 9
.

47
+{ Fl .y Fl }

2 3
Do+ rpy) Do+ py)
(Apg+ Mg + 2 e~ po* tpy t R

LR AN e I ]
Nas L f.'[‘d
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pos, = 0148

= 0.111
Pos,_,

g5, = 5926

q652 = 2.963

965 = 965, + 905, = 3889
06"’1 = 20

ags,, = 13.333

Psg (1) = Pgs (1)
Psg (1) = Ppsgg (¢)

- 2]
Prr () =0 O L+ 1) e Do+ dwy + 2t
2

D
gy *
o Pwotwi _ Prwolwr
3 1
OCwo* *wi) PCwo* wr)
l ¥ 32 —(Xv +X' +2()t
E(XW0+)\WI+26) t~e”V'wo T Wi
2 32
x 4,
+{ wo —¢ Wo }

3 3
OCwo *+ w ) (g + 2wy )
(Mg + Ay + 2607 e Pwot it et

0 P PN - - LY PR R . ) e 3 . v - J "t »
DAL AN AR AN AN A LA AN A LA AN 20, HE, 8, LA~ .13 0,0, 0V 4 b8 O T e, ] b



p.nl = 0.148

p.n2 = (.111

Pss = Py + Pry, = 0250
q7-,1 = 5.926

a7, = 2.063

977 =977, + dy7, = 8.880
a.,.,l =20

gy, = 13.333

2 - -
Pgr () =My gt +1)e (Ao * Ay + 2 )¢
9
12 le XWO }
)4

2

Dy wo
3

PCwo* 2wy ) Cwo + 2w

3,2 =\ + Ay + 26 ¢
%(xwo+>\w1+2e)te(wo wit?2d

A

D) D

A 4N\
BDwo* w1 1© Bwo*+ )

(Awo + Ay + 26)7 tePwo g + 20!

pg; = 0.296
t
gy, = 0444
Pss = Pg7 + Pgy, = 0.740
Ggy = 11.852
)

q872 = 11.852
Qg = (,]871 + q872 = 23.704
g =20
87 1
ag. = 13.333

Yy
-

Pyg (ty= Pge (t)
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T w iy w g e

P73(‘)=P77 (¢) .
2
Transition kernel elements for transitions from class 2 to class 3: d
:
— —{A; + 2¢) ¢
Pu(l)-2c(xnlxt+l)c(l ) 3
=e.._'__1__(xl+2e)2te“(xl+2‘)‘ §
(xl+2c) L
2 —(A; + 2¢) ¢ f
€——=___ (N, +2)te™'")
+ (xl+2e)( 1 )
Igq, = 2000
q“2=2m '
1 2 by
— 2 ~(Agn+ Ay + 26) 8 R,
Pog () =26 pghp B +hpgt +hp t+1) e ot Ay +2¢) :
= PFOMF1 1 a4+ 2 P2 e Ppgt gy + 20
32 Fo F1 -
Dpg+rp t2)° y
2(hpq+ 2 v, - ‘ R
+e—2Fo Fl)‘)(kF0+XFl+‘.’e)'te Mpo+2py+ 2t ¢
(XF0+)‘F1+‘2¢)' '
€ Ngn+ Apy +2¢) e Pro* A
(AF0+AF1+2¢) Fo F1l X
[
Ggs. = 5.926
1 .
q95"=l3.833
g5, = 13.333 :
- . §
pgo“)=pgs(t) e
~
Vv
L/

I

DO OOt N e o T TR L GOV GG PG, P It, 7 , , E 0 T SA WA
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Py () =2 € (\yg Ay 2 Fhyg t +hy ¢ +1) e Pwo + dwy + 208

4 hn A _
= wo w1 31(XWO+XW1+2‘ 1362 e~ Do + Ay + 20
(o + My + 2603 2
2 (A + A _
+e20wo Wl’_’(xwo+xm+2e)2te Do+ dwy + 20t

2 —{> + A + 2¢)t
+‘(>‘wo+xwl+2‘)(>‘W0+XWI+2()e(WO w1 )

qwl = 5.926
q972 = 13.333
q973 = 13.333

g7 = q""x + q972 + q973 = 32.593
Pog () = Py (t)

Since class 3 is a trapping class and consists of only one state, the form of the

tarnsition kernel is not important.




Appendix D
Stationary Probability Distribution of the

Non-perturbed Semi-Markov Chain in
Class 2

By using the Eq. (4.10), the mean holding time for each transition for the

non-perturbed process in class 2 are :

=l=40

Toa =3
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calculated by Eq. (4.9) and is given as follows :

r, =40

?s = 16.296
7, = 16.206
?, =16.296
7 = 16.296

Then, the mean holding time of the non-perturbed process, as defined by Eq. (4.8),

in class 2 is

? = 17.601

By using Eq. (4.7), the stationary probability distribution in class 2 of the non-

perturbed process is found to be,

7, = 0.12501
T, = 0.68199
7g = 0.17684
7, = 0.00929

Ty = 0.00689
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